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PREFACE

THE manner in which MACHINERY'S book,
<c
Spur and Bevel

Gearing," has been received by the mechanical world has

prompted the compilation and publication of a companion book

on "
Spiral and Worm Gearing." This subject has often been

presented in so theoretical a manner that many have assumed

it to be very difficult to master. It is possible, however, to

present the principles of design and calculation of spiral and

worm gearing in such a way that they can be readily under-

stood without resorting to a highly theoretical treatment; and

in preparing this book, the first consideration on the part of

the editor has therefore been to treat the subject in such a way
as to meet the practical requirements of the machine-building

trade.

As a result, in this book, as well as in the companion book,

"Spur and Bevel Gearing," mere theory and academic discus-

sions have been avoided. The rules, formulas and instruc-

tions given are illustrated with engravings whenever necessary,

and numerous examples are given to show their application to

problems met with in machine design. Theoretical considera-

tions, however, have not been neglected in cases where they

have been found necessary to fully explain a practical process,

and this book is, therefore, a treatise on both the theory and

practice of spiral and worm gearing along such lines as will

make it especially useful to practical men.

Readers of mechanical literature are familiar with MA-
CHINERY'S 25-cent Reference Books which include the best of

the material that has appeared in MACHINERY during the past

years, adequately revised, amplified and brought up to date.

Of these books, one hundred and thirty-five different titles have

been published in the past seven years. Many subjects, how-
V
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ever, cannot be adequately covered in all their phases in books

of this size, and in answer to a demand for more comprehensive

and detailed treatments of the more important mechanical

subjects, it has been deemed advisable to bring out a number

of larger volumes, each covering one subject completely. This

book is one of these volumes.

The'information contained in this book is mainly compiled from

articles published in MACHINERY, and the best on the subject

that has appeared in the Reference Books is also included, with

necessary modifications and additions. For the material con-

tained, MACHINERY is indebted to a large number of men who

have furnished practical information to its columns. It has not

been possible to give credit to each individual contributor in

all instances, but it should be mentioned that the framework

upon which the whole book has been built up consists of the

Reference Books and articles which Mr. Ralph E. Flanders, the

well-known gear expert and former associate editor of MA-

CHINERY, has written and compiled; the chapter giving specific

solutions for all the different cases of spiral gear problems has

been contributed by Mr. J. H. Carver; to all other writers

whose material has appeared in MACHINERY, and which is now

used in this book, the publishers hereby express their apprecia-

tion.

MACHINERY.
NEW YORK, September, 1914.
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SPIRAL AND WORM GEARING

CHAPTER I

PRINCIPAL RULES AND FORMULAS FOR DESIGNING
SPIRAL GEARS

THE subject of spiral or helical gearing is one which, from its

very nature, can be approached by any one of a number of differ-

ent ways, and it has been approached by so many of these possible

different ways that the subject has, perhaps, become quite con-

fused in the minds of many readers of technical literature.

The terms
"
spiral gear" and "

helical gear" are, in usage,

synonymous, but the former of these terms is, theoretically, in-

correct. Inasmuch, however, as the word "
spiral" is in such

common use among mechanics in this connection, it has been

used freely throughout this treatise.

Dimensions and Definitions. Some of the terms used will

require explanation. The center angle of a pair of helical or

spiral gears is the angle made by the two center lines or axes of

the gears, as taken in a view perpendicular to both axes. In

Fig. i are shown views of three sets of spiral gears taken in the

plane which shows the center angle. At the left is the ordinary

case in which the shafts are at right angles with each other, so

that the center angle (7) is 90 degrees. In the second case 7

is less than 90 degrees, and in the example shown at the right it

is more. It should be noted in the last two cases that the posi-

tion of the shaft axes is identical, but that the two center angles

are located on opposite sides of axis A. In order to know on

which side of the center line to take the center angle in cases like

those shown, we have to reckon with the position of the teeth

of the gears in contact. The center angle is taken at the side

which includes the line x-x, passing lengthwise of the teeth of
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the gears at the point of contact with each other. Since the

teeth are laid out differently in the two cases, the angles are

different. The case shown in the center is the more usual of

the two, the other being very rare.

In Fig. 2 is given a diagram showing what is meant by the
"
tooth angle" of a helical gear. In using the expression

"
tooth

angle," the angle made by the tooth with the axis of the gear

is meant, not the angle of the tooth with the face of the gear.

Fig. 2 shows aa as the tooth angle of gear a, and ab as the tooth

angle of gear b, used in the sense in which we will use them.

The number of teeth and the pitch diameter are terms which

are identically the same as those used for spur gearing and,

Machinery

Fig. i. Spiral Gears with Different Center Angles

therefore, require no explanation in this connection, it being a

necessary assumption that anyone attempting to design a pair

of spiral gears is well familiar with the design of spur gears.

Practically all spiral gears are of small size, and hence are reck-

oned on the diametral pitch rather than the circular pitch sys-

tem. All the rules and formulas given will, therefore, make
use of the diametral pitch only. This may easily be found from

the circular pitch by dividing 3.1416 by the circular pitch. The
center distance is, of course, the shortest distance between the

axes, and so is measured along the perpendicular common to

both of them.

The regular diametral pitch of a spiral gear will be found, the

same as for a spur gear, by dividing the number of teeth by the

pitch diameter in inches. We are not interested in knowing
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what this is, however, since it does not enter into the calcula-

tions, and since the cutter used has to be for a somewhat finer

diametral pitch. This is shown more clearly in Fig. 3. The
normal diametral pitch, or diametral pitch of the cutter used, is

reckoned from measurements taken along the pitch cylinder at

right angles to the length of the tooth. Pf

represents the regu-

lar circular pitch, while Pn
r

represents the normal circular pitch.

The diametral pitch may be found from this by dividing 3.1416

by Pn '. This is the pitch of the cutter to be used. The cutter,

as will be explained in the following, cannot be selected for the

Machinery

Fig. 2. Diagram showing Notation used for Tooth Angles

actual number of teeth in the gear, but must take into account

the helix angle of the teeth as well, since the curvature as meas-

ured on a line at right angles to the helix is at a greater radius

than when measured on the circle.

The length of the helix, or the lead, as shown in Fig. 3, is the

length of pitch cylinder required to permit one complete revolu-

tion of the tooth if the latter were carried around for the full

length of this cylinder. In Fig. 4 the relation of lead, circum-

ference and tooth angle is plainly shown, the helix AB here

being developed on a plane. The addendum 5, and whole depth
W of the tooth for helical gears, is the same as for plain spur
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gears. The normal thickness of tooth at the pitch line Tn ,
as

shown in Fig. 3, is measured in a direction perpendicular to the

face of the tooth. The regular tooth thickness is shown at T\

this, however, does not enter into the calculations. The out-

side diameter, as for spur gears, is found by adding twice the

addendum to the pitch diameter.

Machinery

Fig. 3. Diagram of Spiral Gear Illustrating Terms used in the
Calculations

Rules for Calculating Spiral Gear Dimensions. The follow-

ing rules are used for calculating the dimensions of spiral or

helical gears:

Rule i . The sum of the tooth angles of a pair of mating heli-

cal gears is equal to the shaft angle; that is to say, in Figs, i

and 2 angle aa added to ab equals 7, as is self-evident from the

engravings.

Rule 2. To find the pitch diameter of a helical gear, divide the

number of teeth by the product of the normal pitch and the

cosine of the tooth angle.

Rule 3. To find the center distance, add together the pitch

diameters of the two gears and divide by 2. This rule is evi-

dently the same as for spur gears.

Rule 4. To prove the calculations for pitch diameters and

center distance, multiply the number of teeth in the first gear

by the tangent of the tooth angle of that gear, and add the num-
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her of teeth in the second gear to the product; the sum should

equal twice the product of the center distance multiplied by the

normal diametral pitch, multiplied by the sine of the tooth

angle of the first gear.

Rule 5. To find the number of teeth for which to select the

cutter, divide the number of teeth in the gear by the cube of

the cosine of the tooth angle.

Machinery

Fig. 4. Diagram showing Relation between Pitch Diameter, Lead
and Helix Angle

Rule 6. To find the lead of the tooth helix, multiply the pitch

diameter by 3.1416 times the cotangent of the tooth angle.

The rules relating to the addendum and the whole depth of

tooth are the same as for spur gears. They are:

Rule 7. To find the addendum, divide i by the normal diam-

etral pitch.

Rule 8. To find the whole depth of tooth space, divide 2.157

by the normal diametral pitch.
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Rule 9. To find the normal tooth thickness at the pitch line,

divide 1.571 by the normal diametral pitch.

Rule 10. To find the outside diameter, add twice the adden-

dum to the pitch diameter.

The problem of designing a pair of spiral gears presents itself

in general in two different forms or classes, which may be stated

as follows:

Class i. The diametral pitch and the numbers of teeth in

the two gears are given.

Class 2. A fixed center distance is given together with the

velocity ratio or the numbers of teeth, witfh the requirement

that standard cutters of even diametral pitch be used.

Examples of Calculations Under Class i. Let it be required

to make the necessary calculations for a pair of spiral gears in

which the shafts are at right angles. Normal diametral pitch

equals 3; number of teeth in gear equals 45; number of teeth

in pinion equals 18.

There being no restriction in this particular case as to center

distance, we have to settle first on the tooth angles for the two

gears. To obtain the highest efficiency, some authorities advise

that the smallest tooth angle be given to the gear having the

smallest number of teeth; and this angle should not, in general,

run below 20 degrees. Keeping it nearly 30 or even up to 45

would be better. On the basis aa
= 30 and ab

= 60 degrees,

we have the following calculations:

To find the pitch diameters, use Rule 2 :

Pitch diameter of gear = } = 30 inches. .

Pitch diameter of pinion = - z = 6.028 inches.

3 X cos 30

To find the center distance, use Rule 3:

3 + 6 '928 = I8 .464 inches.
2

To prove that the previous calculations are correct, use Rule 4 :

45 X tan 60 + 18 =
95.940.

2 X 18.464 X 3 X sin 60 =
95.939.
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These two results are so nearly alike that the previous cal-

culations may be considered fully correct.

To find the number of teeth for which to select the cutter, use

Rule 5:

Forgear >

For pinion, r ^ =
28, approximately.

To find the lead of the tooth helix, use Rule 6:

Lead for gear
= 3.1416 X 30 X cot 60 =

54.38 inches.

Lead for pinion
= 3.1416 X 6.928 X cot 30 = 37.70 inches.

To find the addendum, use Rule 7 :

Addendum = ^ = 0.333 inch-

To find the whole depth of tooth space, use Rule 8:

Whole depth = 2>I 57 = 0.719 inch.

o

To find the normal tooth thickness at the pitch line, use

Rule 9:

Tooth thickness = ''
=0.523 inch.

o

To find the outside diameter, use Rule 10:

For gear, 30 + 0.666 = 30.666 inches.

For pinion, 6.928 + 0.666 = 7.594 inches.

This concludes the calculations for this example. If it is re-

quired that the pitch diameters of both gears be more nearly

alike, the tooth angle of the gear must be decreased, and that of

the pinion increased.

Suppose we have a case in which the requirements are the same

as in Example i, but it is required that both gears shall have

the same tooth angle of 45 degrees. Under these conditions the

addendum, whole depth of tooth and normal thickness at the

pitch line would be the same, but the other dimensions would

be altered as below:

Pitch diameter of gear =-**-
3
= 21.216 inches.

3 X cos 45

Pitch diameter of pinion =-5
= 8.487 inches.

3 X cos 45
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o ,. , 21.216+8.487 . ,

Center distance = L =
14.851 inches.

Number of teeth for which to select cutter:

For gear,
- ^ =

127, approximately,
(cos 45 ;

For pinion. -, -^-z =51, approximately.
(cos 45 )

3

Lead of helix for gear = 3.1416 X 21.216 X cot 45
=

66.65 inches.

Lead of helix for pinion = 3.1416 X 8.487 X cot 45
= 26.66 inches.

Outside diameter of gear = 21.216 + 0.666 = 21.882 inches.

Outside diameter of pinion = 8.487 + 0.666 =
9.153 inches.

Examples of Calculations Under Class 2. In Class 2 use is

made of the term "equivalent diameter." The quotient ob-

tained by dividing the number of teeth in a helical gear by the

diametral pitch of the cutter used gives us a very useful factor

for figuring the dimensions of helical gears, and this has been

given the name "equivalent diameter," an abbreviation of the

words "diameter of equivalent spur gear," which more accu-

rately describe it. This quantity cannot be measured on the

finished gear with a rule, being only an imaginary unit of meas-

urement.

Rule ii. To find the equivalent diameter of a helical gear,

divide the number of teeth of the gear by the diametral pitch of

the cutter by which it is cut.

Preliminary Graphical Solution. The process of locating a

railway line over a mountain range is divided into two parts:

the preliminary survey or period of exploration, and the final

determination of the grade line. The problem of designing a

pair of helical gears resembles this engineering problem in having

many possible solutions, from which it is the business of the

designer to select the most feasible. For the exploration or pre-

liminary survey the diagram shown in Fig. 5 will be found a

great convenience. The materials required are a ruler with a

good straight edge, and a piece of accurately ruled, or, prefer-
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ably, engraved, cross-section paper. If a point O be so located

on the paper that BO, the distance to one margin line, be equal
to the equivalent diameter of gear a, while B'O, the distance to

the other margin line, be equal to the equivalent diameter of

gear 6, then (when the rule is laid diagonally across the paper in

any position that cuts the margin lines and passes through point

0) DO will be the pitch diameter of gear a, D'O the pitch diam-

eter of gear b, angle BOD the tooth angle of- gear a and angle

B'OD f

the tooth angle of gear b. This simple diagram presents

Machinery

Fig. 5. Preliminary Solution with a Rule and Cross-section Paper

instantly to the eye all possible combinations for any given

problem. It is, of course, understood that in the shape shown

it can only be used for shafts making an angle of 90 degrees

with each other.

The diagram as illustrated shows that a pair of helical gears

having 12 and 21 teeth each, cut with a 5-pitch cutter, and hav-

ing shafts at 90 degrees with each other and 5 inches apart,

may have tooth angles of 36 52' and 53 8', and pitch diameters

of 3 inches and 7 inches, respectively.
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Suppose it were required to figure out the essential data for

three sets of helical gears with shafts at right angles, as follows:

i st. Velocity ratio 2 to i, center distance between shafts

2\ inches.

2d. Velocity ratio 2 to i, center distance between shafts

3! inches.

3d. Velocity ratio 2 to i, center distance between shafts

4 inches.

We will take the first of these to illustrate the method of pro-

cedure about to be described.

We have a center distance of 2\ inches and a speed ratio be-

tween driver and driven shafts of 2 to i. The first thing to

determine is the pitch of the cutter to use. The designer selects

this according to his best judgment, taking into consideration

the cutters on hand and the work the gearing will have to do.

Suppose he decides that i2-pitch will be about right. In Fig. 5

it will be remembered that DO was the pitch diameter of gear a,

while D'O was the pitch diameter of gear b. That being the

case DOD' is equal to twice the distance between the shafts.

In the problem under consideration this will be equal to 2 X 2},

or 4! inches. Fig. 6 is a skeleton outline showing the operation

of making the preliminary survey with rule and cross-section

paper. AG and AGr

represent the margin lines of the sheet,

while DD' represents the graduated straight-edge. By the con-

ditions of the problem, the distance between points D and D',

where the ruler crosses the margin lines, must be equal to 4^
inches. There has next to be determined at what angle of in-

clination the ruler shall be placed in locating this line. To do

this we will first find our "ratio line." Select any point C
such that CF' is to CF as 2 is to i, which is the required ratio of

the gears. Draw through point C, so located, the line AE.
Line AE is then the ratio line, that is, a line so drawn that the

measurements taken from any point on it to the margin lines

will be to each other in the same ratio as the required ratio be-

tween the driving and driven gear. Now, by shifting the ruler

on the margin lines, always being careful that they cut off the

required distance of 4^ inches on the graduations, it is found
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that when the rule is laid as shown in position No. i, cutting the

ratio line at 0', the distance from the point of intersection to

corner A is at its maximum. For the minimum value the tooth

angle is the limiting feature. For a gear of this kind 30 degrees

is, perhaps, about as small as would be advisable, so when the

ruler is inclined at an angle of about 30 degrees with margin
line AG', and occupies position No. 2 as shown, it will cut line

AE at 0"
',
and the distance cut off from the point of intersection

Machinery

Fig. 6. Preliminary Graphical Solution for Problem No. i

to corner A will be at its minimum value. The ruler must then

be located at some intermediate position between No. i and

No. 2.

Supposing, for example, 14 teeth in gear a and 28 teeth in gear

b be tried. According to Rule n the equivalent diameter of

gear a will then be 14-^-12, or 1.1666 inch; the equivalent

diameter of b will be 28 -f- 12, or 2.3333 inches. Returning to

the diagram to locate the point of intersection, it will be found

that point 0"
f

is so located that lines drawn from it to AG and
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AG' will be equal to 1.1666 inch and 2.3333 inches, respectively,

but this is beyond point O
f

,
which was found to be the outermost

point possible to intersect with a 4^-inch line DD''. This shows

that the conditions are impossible of fulfillment.

Trying next 12 teeth and 24 teeth, respectively, for the two

gears, the equivalent diameters by Rule n will be i inch and

2 inches. Point is now so located that OB equals i inch and

OB' equals 2 inches. Seeing that this falls as required between

0' and 0"
',
stick a pin in at this point to rest -the straight-edge

against, and shift the straight-edge about until it is located in

such an angular position that the margin lines AG and AG'
cut off 4^ inches, or twice the required distance between the

shafts, on the graduations. This gives the preliminary solution

to the problem. Measuring as carefully as possible, DO, the pitch

diameter of gear a, is found to be about 1.265 mcn diameter,

and D'O, the pitch diameter of gear b, about 3.235 inches. Angle

BOD, the tooth angle of gear a, measures about 37 50'. Angle

B'OD', the tooth angle of gear b, would then be 52 10' accord-

ing to Rule i.

Final Solution by Calculations. To determine angle BOD
more accurately than is feasible by a graphical process, use the

following rule:

Rule 12. The tooth angle of gear a in a pair of mating helical

gears a and b, whose axes are 90 apart, must be so selected

that the equivalent diameter of gear b plus the product of the

tangent of the tooth angle of gear a by the equivalent diameter

of gear a will be equal to the product of twice the center dis-

tance by the sine of the tooth angle of gear a. (This rule, it will

be seen, is simply a modification of Rule 4.)

That is to say in this case, OB' + (OB X the tangent of angle

BOD) = DD' X the sine of angle BOD. Perform the opera-

tions indicated, using the dimensions which were derived from

the diagram, to see whether the equality expressed in this equa-
tion holds true. Substituting the numerical values:

2 + (i X 0.77661) =
4.5 X 0.61337,

2.77661 =
2.76016,

a result which is evidently inaccurate.
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The solution of the problem now requires that other values

for angle BOD, slightly greater or less than 37 50', be tried

until one is found that will bring the desired equality. It will be

found finally that if the value of 38 20' be used as the tooth

angle of gear a, the angle is as nearly right as one could wish.

Working out Rule 12 for this value:

2 + (i X 0.79070)
=

4.5 X 0.62024

2.79070
=

2.79108.

This gives a difference of only 0.00038 between the two sides of

the equation. The final value of the tooth angle of gear a is

thus settled as being equal to 38 20'. Applying Rule i to find

the tooth angle of gear b we have: 90 38 20' =
51 40'.

The next rule relates to finding the pitch diameter of the gears.

Rule 13. The pitch diameter of a helical gear equals the

equivalent diameter divided by the cosine of the tooth angle

(or the equivalent diameter multiplied by the secant of the tooth

angle). This rule is a modification of Rule 2.

If a table of secants is at hand, it will be somewhat easier to

use the second method suggested by the rule, since multiplying

is usually easier than dividing. Using in this case, however,

the table of cosines, and performing the operation indicated by
Rule 13, we have for the pitch diameter of gear a:

1 -f- 0.78442
=

1.2748, or 1.275 incn
> nearly;

and for the pitch diameter of gear b :

2 -T- 0.62024 =
3.2245, or 3.225 inches, nearly.

To check up the calculations thus far, the pitch diameter of the

two gears thus found may be added together. The sum should

equal twice the center distance, thus:

1.275 +3.225 = 4.500

which proves the calculations for the angle.

Applying Rule 10 to gear a:

1.2748 + (2 -i- 12)
= 1.2748 + 0.1666 = 1.4414 = 1.441 inch,

nearly.

For gear b:

3.2245 + (2 -5- 12)
= 3.2245 + 0.1666 = 3.3911

=
3-39 1 inches,

nearly.
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In cutting spur gears of any given pitch, different shapes of

cutters are used, depending upon the number of teeth in the

gear to be cut. For instance, according to the Brown & Sharpe

system for involute gears, eight different shapes are used for

cutting the teeth in all gears, from a i2-tooth pinion to a rack.

The fact that a certain cutter is suited for cutting a i2-tooth

spur gear is no sign that it is suitable for cutting a i2-tooth

helical gear, since the fact that the teeth are cut on an angle

alters their shape considerably. To find out the number of

teeth for which the cutter should be selected, use Rule 5.

Applying Rule 5 to gear a:

12 -r- O.784
3 = 12 -f- 0.4818 =

25

and for gear b:

24 -T- O.62O3 =
24-7- 0.2383 = 100 +

giving, according to the Brown & Sharpe system, cutter No. 5

for gear a and cutter No. 2 for gear b.

In gearing up the head of the milling machine to cut these

gears it is necessary to know the lead of the helix or "spiral"

required to give the tooth the proper angle. To find this use

Rule 6. In solving problems by this rule, as for Rule 5, it will

be sufficient to use trigonometrical functions to three significant

places only, this being accurate enough for all practical purposes.

Solving by Rule 6 to find the lead for which to set up the gearing

in cutting a:

1.275 X 1.265 X 3.14
=

5-065, or 5^ inches, nearly;

for gear b:

3.225 X 0.79 1 X 3.14
=

8.010, or 8^- inches, nearly.

The lead of the helix must be, in general, the adjustable

quantity in any spiral gear calculation. If special cutters are

to be made, the lead of the helix may be determined arbitrarily

from those given in the milling machine table; this will, however,

probably necessitate a cutter of fractional pitch. On the other

hand, by using stock cutters and varying the center distance

slightly, we might find a combination which would give us for

one gear a lead found in the milling machine table, but it would

only be chance that would make the lead for the helix in the
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mating gear also of standard length. It is then generally better

to calculate the milling machine change gears according to the

usual methods to suit odd leads, rather than to adapt the other

conditions to suit an even lead. It will be found in practice

that the lead of the helix may be varied somewhat from that

calculated without seriously affecting the efficiency of the gears.

The remaining calculations relating to the proportions of the

teeth do not vary from those for spur gears and are here set

down for the sake of completeness only.

The addendum of a standard gear is found by Rule 7 :

For gears a and b this will give:

i -T- 12 = 0.0833 mcn -

The whole depth of the tooth is found by Rule 8:

This gives for gears a and b:

2.157 -T- 12 = 0.1797 inch.

The thickness of the tooth is found by Rule 9:

For gears a and b of the problem this gives:

1.571 -r- 12 = 0.1309 inch.

Variations in Methods Used. This completes all the cal-

culations required to give the essential data for making our first

pair of helical gears. To illustrate the variety of conditions for

which these problems may be solved, the other cases will be

worked out somewhat differently. In the case just considered

no allowance was made for possible conditions which might have

limited the dimensions of the gears, and the problem was solved

for what might be considered good general practice. Gear a,

however, might have been too small to put on the shaft on which

it was intended to go, while gear b might have been too large

to enter the space available for it. If, as we may assume, these

gears are intended to drive the cam-shaft of a gas engine, the

solution would probably be unsatisfactory. Case No. 2 will

therefore be solved for a center distance of 3! inches as required,

but the two gears will be made of about equal diameter.

Fig. 7 shows the preliminary graphical solution of this problem,
the reference letters in all cases being the same as in Fig. 6.

With a lo-pitch cutter, if this suited the judgment of the designer,
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15 teeth in gear a and 30 teeth in gear b would require that the

point of intersection on the ratio line AE be located at where

BO equals the equivalent diameter of gear a, which equals ij

inch, while B'O equals the equivalent diameter of gear b, or

Machinery

Fig. 7. Solution of Problem No. 2 for Equal Diameters

3 inches, both calculated in accordance with Rule n. The re-

quired condition now is that DO be approximated to D'0\ that

is to say, that the pitch diameters of the two gears be about

equal. After continued trial it will be found impossible to locate

0, using a cutter of standard diametral pitch, so that DO and
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D'O shall be equal, and at the same time have DD' equal to

twice the required center distance, which is 2 X 3! inches or

6f inches. If this center distance could be varied slightly with-

out harm, BD could be taken as equal to AB\ then it would be

found that a line drawn from D through O to D'
', though giving

a somewhat shortened center distance, would make two gears

of exactly the same pitch diameter.

Drawing line DOD', however, as first described to suit the

conditions of the problem, and measuring it for a preliminary

solution the following results are obtained: The tooth angle of

gear a =
angle BOD = 63 45'; and the tooth angle of gear b =

angle B'OD' = 90
-

63 45'
= 26 15', according to Rule i.

Performing the operations indicated in Rule 12 to correct these

angles, it is found that when the tooth angle of gear a is 63 54',

and that for gear b is 26 6', the equation of Rule 12 becomes:

3 + (15 X 2.04125)
=

6.75 X 0.89803

6.06187 = 6.06170

which is near enough for all practical purposes. The other dimen-

sions are easily obtained as before by using the remaining rules.

To still further illustrate the flexibility of the helical gear

problem, the third case, for a center distance of 4 inches, will be

solved in a third way. It is shown in MacCord's " Kinematics"

that to give the least amount of sliding friction between the teeth

of a pair of mating helical gears, the angles should be so propor-

tioned that, in the diagrams, line DD' will be approximately at

right angles to ratio line AE. On the other hand, to give the

least end thrust against the bearings, line DDf

should make an

angle of 45 degrees with the margin lines AG and AG
',

in the

case of gears with axes at an angle of 90 degrees, as are the ones

being considered. The first example, worked out in detail, was

solved in accordance with "good practice," and line DD' was

located about one-half way between the two positions just de-

scribed, thus giving in some measure the advantage of a com-

parative absence of sliding friction, combined with as small

degree of end thrust as is practicable. To illustrate some of the

peculiarities of the problem, Case 3 will now be solved to give
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the minimum amount of sliding friction, neglecting entirely the

end thrust, which is considered to be taken up by ball thrust

bearings or some equally efficient device.

By trial it will be found that, with the same number of teeth

in the gear and with the same pitch as in Case 2, giving, in Fig. 8,

BO, the equivalent diameter of gear a, a value of i| inch, and B'O,

the equivalent diameter of gear b, a value of 3 inches, as in Fig. 7,

line DD', which is equal to twice the center distance, or 8 inches,

can then lie at an angle of about 90 degrees with AE, thus meet-

ing the condition required as to sliding friction. Thus this dia-

gram, while relating to gears having the same pitch and number

Fig. 8. Solution of Problem No. 3 for Minimum Sliding Friction

of teeth as Fig. 7, has an entirely different appearance, and

gives different tooth angles and center distances, solving the

problem as it does for the least sliding friction instead of for

equal diameters of gears.

Measuring the diagram as accurately as may be, the following

results are obtained: Tooth angle of gear a = BOD = 28;
tooth angle of gear b =

angle B'OD' = 90
- 28 = 62. This

is the preliminary solution. After accurately working it out by
the process before described, we have as a final solution, tooth

angle of gear a = 28 28'; tooth angle of gear b = 61 32'.

From this the remaining data can be calculated.

For designers who are skillful enough to solve such problems
as these graphically without reference to calculations, the dia-



RULES AND FORMULAS 19

gram may be used for the final solution. The variation between

the results obtained graphically and those obtained in the more

accurate mathematical solution is a measure of the skill of the

draftsman as a graphical mathematician. The method is simple

enough to be readily copied in a notebook or carried in the head.

If the graphical method is to be used entirely, it will be best

not to trust to the cross-section paper, which may not be accu-

rately ruled; instead skeleton diagrams like those shown in Figs. 6,

7 and 8 may be drawn. For rough solutions, however, to be

afterward mathematically corrected, as in the examples con-

sidered in this chapter, good cross-section paper is accurate

enough. It permits of solving a problem without drawing a

line. Point O may be located by reading the graduations; a

pin inserted here may be used as a stop for the rule, from which

the diameter and center distance are read directly; dividing AD,
read from the paper, by DD', read from the rule, will give the

sine of the tooth angle of the gear a.

Basic Rules and Formulas for Spiral Gears. The rules and

formulas given in the foregoing may be tabulated as shown on

the following page. In the formulas in the table "Basic Rules

and Formulas for Spiral Gear Calculations" the following nota-

tion is used:

Pn = normal diametral pitch (pitch of cutter) ;

D =
pitch diameter;

N = number of teeth;

a =
spiral angle;

7 = center angle, or angle between shafts;

C = center distance;

N' = number of teeth for which to select cutter;

L = lead of tooth helix;

5 = addendum;
W = whole depth of tooth;

Tn = normal tooth thickness at pitch line;

= outside diameter.

Examples of Spiral Gear Problems. As proficiency in solv-

ing spiral gear problems can be obtained only by a great deal of

practice, a number of examples will be given in the following,



20 SPIRAL GEARING

Basic Rules and Formulas for Spiral Gear Calculations 4
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which can be solved by simple modifications of the methods

outlined for problems of Class 2. The same reference letters

are used as before.

Example i. Find the essential dimensions for a pair of

spiral gears, velocity ratio 3 to i, center distance between shafts

5^ inches, angle between shafts 38 degrees.

First obtain a preliminary solution by the diagram shown in

Fig. 9. Draw lines AG and AG\ making an angle 7 with each

other equal to 38 degrees, the angle between the axes. Locate

the ratio line AE by finding any point such as Oi between AG

Machinery

Fig. 9. Diagram Applying to the Solution of Example i

and AGi, that is distant from each of them in the same ratio as

that desired for the gearing. In the case shown, it is 6 inches

from AG\ and 2 inches from AG, which is in the ratio of 3 to i

as required. Through Oi draw line AE which may be called

the ratio line. Select a trial number of teeth and pitch of cutter

for the two gears, such, for instance, as 36 teeth for the gear

and 12 for the pinion, and with 5 diametral pitch of the cutter.

The diameter of a spur gear of the same pitch and number of

teeth as the gear would be 36 -f- 5
=

7.2 inches. Find the

point on AE, which is 7.2 inches from AGi. This point will

be 2.4 inches from AG, if AE is drawn correctly.

Now apply a scale to the diagram, with the edge passing
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through and with the zero mark on line AG, shifting it to differ-

ent positions until one is found in which the distance across from

one line to another (DDi in the figure) is equal to twice the

center distance, or 10.25 inches. If a position of the rule cannot

be found which will give this distance between lines AG and AG\,

new assumptions as to number of teeth and diametral pitch of

the gear and pinion must be made which will bring point in a

location where line DDi may be properly laid out. DD{ being

drawn, the problem is solved graphically. The tooth angle of

the gear is BiODi, or ab ,
while that of the pinion is BOD, or aa .

ODi will be the pitch diameter of the gear, and OD the pitch

diameter of the pinion.

To obtain the dimensions more accurately than can be done

by the graphical process, the pitch diameters should be figured

from the tooth angles we have just found. To do this, divide

the dimensions OBi and OB for gear and pinion, by the cosine

of the tooth angles found for them. If they measure on the

diagram, for instance, 21 degrees 50 minutes and 16 degrees

10 minutes respectively (note that the sum of aa and ab must

equal 7), the calculation will be as follows:

7.2 + 0.92827 = 7.7563
= Db

2.4-7- 0.96046 = 2.4988 = Da

IO.255I = 2 C

The value we thus get, 10.2551 inches, for twice the center

distance, is somewhat larger than the required value, 10.250

inches. We have now to assume other values for aa and e*6,

until we find those which give pitch diameters whose sum equals

twice the center distance. Assume, for instance, that ab
= 21

degrees 43 minutes, then aa = 38 degrees 21 degrees 43 min-

utes = 16 degrees 17 minutes. We now have:

7.2 -f- 0.92902 =
7.7501

= Db

2.4 -j- 0.95989 = 2.5003 = Dg

IO.25O4 = 2 C

This value for twice the center distance is so near that required

that we may consider the problem as solved. The other dimen-

sions for the outside diameter, lead, etc., may be obtained as for
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spiral gears at right angles, and as described in the previous part

of this chapter.

Example 2. Find the essential dimensions of a pair of spiral

gears, velocity ratio 8 to 3, center distance between shafts 9^6

inches, angle between shafts 40 degrees.

The diagram for solving this problem is shown in Fig. 10.

The axis lines AG\ and AG are drawn as before and the ratio

line AE is drawn in the ratio of 8 to 3, or 16 to 6, by the same

method as just described. A point is found having a location

corresponding to 64 teeth and 5 pitch for the gear, and 24 teeth

for the pinion. This gives distance OBi = 1 2.8 inches, and OB =

Machinery

Fig. 10. Diagram Applying to the Solution of Example 2

4.8 inches, by which position is so located that a line

can be drawn through it at a convenient angle, and with a length

equal to twice the center distance, or 18.625 inches. We measure

the angle for a preliminary graphical solution as before, and then

by trial find the final solution, in which angle ab is 17 degrees

45 minutes, and aa is 22 degrees 15 minutes as follows:

12.8 -^ 0.95240 = 13.4397
= A

4.8 -f- 0.92554
= 5.1862

= Dg

18.6259
= 2 C

This gives the value of twice the center distance near enough
for gears of this size.
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Example 3. Find the essential dimensions for a pair of spiral

gears, velocity ratio 5 to 2, center distance between shafts 4I
1
F

inches, angle of shafts 18 degrees.

The diagram for solving this problem is shown in Fig. 1 1 . The
axis lines AGi and AG are drawn as before, and the ratio line AE
is drawn in the ratio of 5 to 2, by the same method as just de-

scribed. A point O is found having a location corresponding

to 45 teeth and 8 pitch for the gear, and 18 teeth for the pinion.

This gives distance OBi =
5.625 inches, and OB =

2.250 inches,

in which position is so located that line DDi can be drawn

through it at a convenient angle, and with a length equal to

twice the center distance, or 8.125 inches. We measure the

angles for a preliminary mathematical solution as before, and

Fig. ii. Diagram Applying to the Solution of Example 3

then by trial find the final solution, in which angle ab is

16 degrees 45 minutes and aa is i degree 15 minutes as follows:

5.625 -s- 0.95757 =
-5.8742

= Db

2.250 -T- 0.99976 =
2.2505 = Da

8.1247
= 2C

It is often a matter of great difficulty, when the center angle y
is as small as in this case, to find a location for point O such that

standard cutters can be used, and that line DDi can be drawn of

the proper length through without bringing D to the left of

B, or DI to the left of BI. It will be noticed in this case that to

make the center distance come right, angle aa had to be made

very small, so that the pinion is practically a spur gear. In

some cases, to get the proper center distance, it may be neces-

sary to so draw line DDi that one of the tooth angles is measured
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on the left side of BO or BO. Such a case, for instance, is shown

in the position of df)d. When a line has to be drawn like this,

the tooth angles aa
f and ab

f
are opposite in inclination, instead

of having them, as usual, either both right-hand or both left-

hand. In Fig. 12 are shown gears drawn in accordance with the

location of line DDi of Fig. n, while Fig. 13 shows a pair drawn

in accordance with ddi of the same diagram, which will illustrate

the state of affairs met with in cases of this kind. This expedient

of making one spiral gear right-hand and one left-hand should

never be resorted to except in case of extreme necessity, as the

construction involves a very wasteful amount of friction from

the sliding of the teeth on each other as the gears revolve.

Machinery

Figs. 12 and 13. Comparison between Two Pairs of Gears determined
from the Diagram in Fig. n

Demonstration of Grant's Formula. As already mentioned,

the number of teeth for which the cutter should be selected for

cutting a helical gear, is found from the formula

in which Nf = number of teeth for which cutter is selected;

N = actual number of teeth in helical gear;

a =
angle of tooth with axis.

Note that cos3 a is equivalent to (cos a)
3

.

A demonstration of this formula was presented by Mr. H. W.
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Henes in MACHINERY, April, 1908. This demonstration is as

follows:

Let Pn be the perpendicular distance between two consecutive

teeth on the spiral gear, and let A be the diameter of the spiral

gear. Let the gear be represented as in Fig. 14, and pass a plane

through it perpendicular to the direction of the teeth. The

section will be an ellipse as shown in CEDF. Designate the

semi-major and semi-minor axes by a and &, respectively.

Now Nr
is the number of teeth which a spur gear would have

Machinery

Fig. 14. Diagram for Deriving Formula for Determining Spur Gear
Cutter to be used for Cutting Spiral Gears

if its radius were equal to the radius of curvature of the ellipse

at E. Therefore, it is required to determine the radius of this

curvature of the ellipse. This is done as follows:

From the figure we have:

2& = axisF = A (i)

/^T- t-iT-r /// Dl / \
2 a = axis CD = GH = =

(2)
cos a cos a

From (i) and (2) we have for a and b,

(3)
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A
a = -

(4)
2 cos a

It is known, and shown by the methods of calculus, that the

minimum curvature of an ellipse, that is, the curvature at E

or F, equals . Taking the values of a and b found in (3) and

(4), we have the curvature at E:

~ b 2 4 DI COS2
a. 2 COS2 a , NCurvature =

-,
=
-^-

- L__ __
(s )

4 COS2 a

It is also shown in calculus that the curvature is equal to
K.

where R is the radius of curvature at the point E. Therefore

from (5) we have :

i 2 cos2 a. , , , DI x,x- = -- and thus R = -~-
(6)R DI 2 COS2 a

Formula (6) can also be arrived at directly, without reference

to the minimum curvature of the ellipse, by introducing the

formula for the radius of curvature in the first place. The

curvature is simply the reciprocal value of the radius of curva-

ture, and is only a comparative means of measurement. The

radius of curvature of an ellipse at the end of its short axis is

a2

> from which Formula (6) may be derived directly by intro-

ducing the values of a and b from Equations (3) and (4).

Having now found the radius of curvature of the ellipse at E,

we proceed to find the number of teeth which a spur gear of that

radius would have. From Fig. 14 we have:

AB = *Z-
(7)

COS a

Now, if AB be multiplied by the number of teeth of the spiral

gear, we shall obtain a quantity equal to the circumference of

the gear; that is:

pAB X N = irDi, and since AB = from (7)
COS a

-^=- X N = TrA (8)
COS a
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Since N' is the number of teeth which a spur gear of radius R
would have, then,

N'=^f (9)
-Ln

In Equation (9) the numerator of the fraction is the circum-

ference of the spur gear whose radius is R, and the denominator

is the circular pitch corresponding to the cutter.

From Equation (6) we have:

2 COS2 a

Substituting this value of R in (9), we have:

From Equation (8) we have:

A = -

Tr

Substitute this value of D\ in Equation (10) and we have:

A = --
(ii)Trcosa

2 PnTT COS
3 a

or

COS a:

Since N is the number of teeth in a spiral gear and N' is the

number of teeth in a spur gear which has the same radius as the

radius of curvature of the ellipse referred to, this is the equiv-

alent of saying that the cutter to be used should be correct

for a number of teeth which can be obtained by dividing the

actual number of teeth in the gear by the cube of the cosine

of the tooth angle. Since the cosine of angle is always less than

unity, its cube will be 'still less, so N' is certain to be greater

than N, which will account for the fact that spiral gears of less

than 12 teeth can be cut with the standard cutters.



CHAPTER II

FORMULAS FOR SPECIAL CASES OF SPIRAL GEAR
DESIGN

THE rules and formulas given in the tabulated arrangement in

the preceding chapter are presented in the same order as they
would ordinarily be used by the designer when calculating a

pair of spiral gears. The formulas, however, cannot be directly

applied to all cases of spiral gear problems, except by the use of

a graphical method, as outlined, and a complete set of formulas

for each of the sixteen different cases which are most frequently

met with is, therefore, given in the following, together with an

example for each case. These sixteen cases are:

1. Shafts parallel, ratio equal and center distance approxi-

mate.

2. Shafts parallel, ratio equal and center distance exact.

3. Shafts parallel, ratio unequal and center distance approxi-

mate.

4. Shafts parallel, ratio unequal and center distance exact.

5. Shafts at right angles, ratio equal and center distance

approximate.

6. Shafts at right angles, ratio equal and center distance

exact.

7. Shafts at right angles, ratio unequal and center distance

approximate.

8. Shafts at right angles, ratio unequal and center distance

exact.

9. Shafts at 45-degree angle, ratio equal and center distance

approximate.

10. Shafts at 45-degree angle, ratio equal and center distance

exact.

11. Shafts at 45-degree angle, ratio unequal and center dis-

tance approximate.
29
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12. Shafts at 45-degree angle, ratio unequal and center dis-

tance exact.

13. Shafts at any angle, ratio equal and center distance ap-

proximate.

14. Shafts at any angle, ratio equal and center distance exact.

15. Shafts at any angle, ratio unequal and center distance

approximate.

16. Shafts at any angle, ratio unequal and center distance exact.

Fig. 9 Fig. 1O Fig. 1 1 Fig. 12

Figs, i to 12. Thrust Diagrams for Spiral Gears Direction of Thrust
depends upon Direction of Rotation, Relative Position of Driver and
Driven Gear, and Direction of Spiral

The proofs of the more complicated formulas are given in the

explanatory matter preceding each specific set of formulas. All

the information necessary for the shop operations is given, in-

cluding the number of teeth marked on the spur gear cutter

used, and the lead of the spiral, which data are often omitted on

the drawing, but which always ought to be given. If omitted,

the operator of the milling machine or gear cutter must deter-

mine these data himself, and this is not a commendable method.
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Procedure in Calculating Spiral Gears. One of the first

steps necessary in spiral gear design is to determine the direction

of the thrust, if the thrust is to be taken in one direction only.

When the direction of the thrust has been determined and the

relative position of the driver and driven gear is known, the

direction of spiral (right- or left-hand) may be found. The

thrust diagrams, Figs, i to 28, are used for finding the direction

of spiral. The arrows at the end bearings of the gears indicate

Flg.,28

Figs. 13 to 28. Thrust Diagrams for Spiral Gears Direction of Thrust

depends upon Direction of Rotation, Relative Position of Driver and
Driven Gear, and Direction of Spiral

the direction of the reaction against the thrust caused by the

tooth pressure. The direction of the thrust depends on the

direction of spiral, the relative positions of driver and driven

gear and the direction of rotation. If the exact condition with

regard to thrust is not found in the diagrams, it may be obtained

by changing any one of these three conditions; that is, in Fig. i

the thrust may be changed to the opposite direction by inter-

changing driver or driven gear, by reversing the direction of
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rotation or by changing the direction of spiral. Any one of

these alterations will produce a thrust in the opposite direc-

tion.

The conditions of design will determine the nature of center

distances, whether they must be exact or approximate. The

strength of tooth needed, or sometimes the cutters on hand, will

determine the normal pitch of the gear. The formulas given

for the different conditions of spiral gearing are all based on the

normal diametral pitch which is the same as the diametral pitch

of the cutter used. The number of teeth in each gear is, of

LEAD =
Machinery,N. Y.

Figs. 29 and 30. Diagrams for Derivation of Formulas

course, determined by the required speed ratio of the shafts.

The angle of spiral depends on the conditions of the design, and

the relative position of the shafts. If the shafts are parallel,

the gears may be of the herringbone type, when an angle as

great as 45 degrees may be used, as there is no end thrust. When
used as shown in the thrust diagrams, the spiral angle should not

exceed 20 degrees with parallel shafts, thus avoiding excessive

end thrust. In order to obtain smooth running gears, the spiral

angle should also be such that one end of the tooth remains in

contact until the opposite end of the following tooth has found a

bearing, as indicated at V and W in Fig. 30.
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i. Shafts Parallel, Ratio Equal and Center Distance Approx-

imate. vThis case is met with in new designs, where an exact

center distance is of no importance. The five factors, direction

of spiral, approximate center distance, normal diametral pitch,

number of teeth and angle of spiral are first determined upon.

Then, from the formulas given, the required data are found as

shown in the example given. The following shows the derivation

of the formulas; in Fig. 29, let a be the angle of spiral with the

axis of the gear; let H be the distance from one tooth to the next,

measured on the circumference of the pitch circle, and K the

jr
normal circular pitch of the gear. Then H = -- The diam-

cos a

etral pitch = -^ - - Let Pn = normal diametral pitch,
circular pitch

or diametral pitch of cutter used. Then Pn =' -> or transposing,
K.

K ~ - If N = number of teeth in gear, the circumference
* n

NH
of the pitch circle = N X H, and- =

pitch diameter = D.

Hence,

TT cos a TTCOSCK Pn

In all cases where the shafts are parallel, the value of a is the

same for both gears. The outside diameter of the spiral gear is

found exactly as in spur gears, by adding to the pitch diam-
* n

N
eter. The derivation of formula T = r was treated fully

cos3 a
in the preceding chapter.

A standard spur gear cutter is, of course, used in cutting spiral

gears, but T
y
the number of teeth marked on it, will probably

not be the actual number of teeth in the spiral gear to be cut,

T depending, as the formula shows, on the spiral angle. As

to the lead of spiral, let Fig. 30 represent a spiral gear, where

the oblique line is the path of the tooth unfolded. Then L =

irD cot a, in which L = lead of spiral, irD = pitch circumference

and a =
spiral angle.
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To find:

i. D

Formulas, Case i

Given or assumed:

i. Hand of spiral on driver or driven gear de-

pending on rotation and direction in which

thrust is to be received.

Ca = approximate center distance.

Pn = normal pitch (pitch of cutter).

N = number of teeth.

a = angle of spiral (usually less than 20

degrees to avoid excessive end thrust).

pitch diameter =
N

Pn cos a

2. O = outside diameter = D + -

Pn

3. T = number of teeth marked on cutter =

4. L = lead of spiral
= irD cot a.

Example

N
cos3 a

Given or assumed:

i. See illustration.

3- Pn = 8.

5. a = 15 degrees.

To find:

N 24

Pn cos a 8 X 0.9659
2

2. Ca = 3 inches.

4. N =
24.

i. - 3.106 inches.

2. O =
3.106 + o

=
3-356 inches.

o

3. T = = =
26.6, say 27 teeth.

0.9 \

4. L = 7rZ)coti5
= 3.1416X3.106X3.732=36.416 inches.

2. Shafts Parallel, Ratio Equal and Center Distance Exact.

The spiral angle a is found in terms of the number of teeth in

each gear, normal diametral pitch and pitch diameter, which

latter is, of course, equal to the center distance.

N N
From Formula (i) in Case (i),D = -

,
or cos a =

Pn cos a

The remaining formulas are found as in the first case.

PnXD
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Formulas, Case 2

Given or assumed:

1. Position of gear having right- or left-hand

spiral, depending on rotation and direc-

tion in which thrust is to be received.

2. C exact center distance =
pitch diam-

eter D.

3. Pn = normal pitch (pitch of cutter).

4. N = number of teeth in each gear.

To find:

I. COS a.

N
PnD

N
2. O = outside diameter = D + -

f'n

3! T = number of teeth marked on cutter =

4. L = lead of spiral
= irD cot a.

a is usually less than 20 degrees to avoid excessive end thrust.

cosd

Given or assumed:

i. See illustration.

3- Pn = 8.

To find:

N

Example

2. C 3 inches.

22.

i. cos a
PnD

0.9166, or a =
23 34'.

2. O -^
=

3 + o
= 3i inches.

T = N 22
28.2, say 28 teeth.

cos3 a (o.92)
3

4. L = irDcota = 3.1416 X 3 X 2.29
=

21.58 inches.

3. Shafts Parallel, Ratio Unequal and Center Distance

Approximate. The formulas for this case are practically the

same as for Case (i), and are derived in the same manner. The

spiral angle is of the same value in both gears, as in all spiral

gears with parallel shafts, but, of course, of a different direction

(hand) in each gear.
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Formulas, Case 3

Given or assumed:

1. Position of gear having right- or left-hand

spiral, depending upon rotation and direction

in which thrust is to be received.

2. Ca = approximate center distance.

3. Pn = normal pitch.

4. N = number of teeth in large gear.

5. n = number of teeth in small gear.

6. a = angle of spiral.

To find:

1. D = pitch diameter of large gear =

2. d pitch diameter of small gear =

N

Pn cos a

3.
= outside diameter of large gear = D -\-

--

4.

5.

o outside diameter of small gear +
T = number of teeth marked on cutter (large gear)

N
COS3 a

6. / = number of teeth marked on cutter (small gear) = -
cos3 a

7. L = lead of spiral on large gear = irD cot a.

8. / = lead of spiral on small gear = ird cot a.

9. C = center distance (if not right vary )
= % (D + d).

Example
Given or assumed:

i. See illustration. 2. Ca = 17 inches. 3. Pn = 2.

4. N 48. 5. n = 20. 6. a = 20 degrees.

To find:

N 48
i.

COS a 2 X 0.9397

2. d = 20

Pn COS CK 2 X 0.9397

= 25.541 inches.

= 10.642 inches.

_2_

P*
25.541 + ~ = 26.541 inches.
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*J *)

o = d + = 10.642 + - = 11.642 inches.
* 2

5-

6.

T =

t =

N
cos3 a ^=57-8, say 58 teeth.

2O =
24.1, say 24 teeth.

cos3
a. (0.9397)*

7. Z, = xDcota = 3.1416 X 25.541 X 2.747 = 220.42 inches.

8. / = Trdcotc* = 3.1416 X 10.642 X 2.747
= 91.84 inches.

9- C = % (D -}- d)
= % (25.541 + 10.642) =

18.091 inches.

4. Shafts Parallel, Ratio Unequal and Center Distance Ex-

act. In this case the sum of the two pitch diameters of the

N n
gears, or twice the center distance is

Pn COS a. Pn COS a.

= 2C

from which cos a = N + n

2PnC
N and n are the numbers of teeth in the respective gears, and

C the center distance. The remaining eight formulas are simi-

lar to those of the other cases.

L

Formulas, Case 4

Given or assumed:

1. Position of gear having right- or left-hand

spiral, depending upon rotation and direc-

tion in which thrust is to be received.

2. C = exact center distance.

3. Pn = normal pitch (pitch of cutter).

4. N = number of teeth in large gear.

5. n = number of teeth in small gear.

To find:

I. COS a =

2. D =
pitch diameter of large gear =

N

d =
pitch diameter of small gear =

Pn cos a

n

Pn COS a

O = outside diameter of large gear = D
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5. o = outside diameter of small gear = d H
*

6. T number of teeth marked on cutter (large gear)

N
COS3 a

7. / = number of teeth marked on cutter (small gear)

n

8. L = lead of spiral (large gear)
= irD cot a.

9. / = lead of spiral (small gear) = ird cot a.

Example
Given or assumed:

i. See illustration. 2. C =
18.75 inches. 3. Pn = 4.

4. N =
96. 5. n =

48.

To find:

N + n 96 + 48 , ,,
1. cos a = =^ = rt- = 0.96. or a 16 16 .

2PnC 2X4X18.75
A7 96 . ,

2. Z) = = 2 = 25 inches.
Pn cos a 4 X 0.96

n 48 . ,

i. a = = =
12.5 inches.

Pn cos a 4 X 0.96

2 2

4. 0=Z>-f~=25+- =
25.5 inches.

-Tn 4

5. o = d + -^~= 12.5 -f
- =

13 inches.
rn 4

6. r--4- = r4^ =I 8 teeth.
cos3 a. (o.96)

3

7. t = ^- =
.

4
,.

3
= 54 teeth.

cos3 a (o.96)
3

8. L = irDcota = 3.1416 X 25 X 3.427
= 269.15 inches.

9. / = irdcota = 3.1416 X 12.5 X 3.427
=

134-57 inches.

5. Shafts at Right Angles, Ratio Equal, and Center Distance

Approximate. The sum of the spiral angles of both gears must

in this, and in the three following cases, equal 90 degrees, and

the direction of the spiral must be the same for both gears. When
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the spiral angles of both gears equal 45 degrees, the pitch diam-

eters of both gears will be equal, and are found by the formula:

D Pn cos45

The other formulas are the same as those given in the previous

cases.

Formulas
,
Case 5

When the spiral angles are 45 degrees, the gears are exactly

alike; when other than 45 degrees, the sum of

the spiral angles must equal 90 degrees.

Given or assumed:

1. Position of gear having right- or left-hand

spiral, depending on the rotation and

direction in which the thrust is to be

received.

2. C = approximate center distance.

3. Pn = normal pitch (pitch of cutter).

4. N = number of teeth.

5. a = angle of spiral.

To find:

(a) When spiral angles are 45 degrees.

N
1. D = pitch diameter =-:r

0.707 1 1 Pn

2
2. = outside diameter = D +

n

3. T = number of teeth marked on cutter

4. L lead of spiral
= irD.

5. C = center distance = D.

N
-353

(b) When spiral angles are other than 45 degrees.

N
i. D = pitch diameter =

2. T = number of teeth marked on cutter =
N
r

cos3

3. C center distance = sum of pitch radii.

4. L = lead of spiral
= irD cot a.
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Example
Given or assumed:

i. See illustration. 2. Ca = 2.5 inches. 3. Pn = 10.

4. N = 18 teeth. 5. a = 45 degrees.
To find:

1. D = - Tr = = 2.546 inches.
0.707II Pn 0.707II X 10

2 2
2. O = D + -- =

2.546 + =
2.746 inches.

Jt n IO

3. T = r- = - = 51 teeth.
cos3 a 0.353

4. L = irD X i = 3.i4 x6 X 2.546
=

7.999 inches.

6. Shafts at Right Angles, Ratio Equal and Center Distance

Exact. After deciding upon an approximate spiral angle of one

gear, the number of teeth in each gear is found nearest the value

CPn cos
(f>,

where <}> is this approximate spiral angle, and C the

N
exact center distance. If = C. or N = CPn cos a.Pn cos a
then N would be an approximate number of teeth with an exact

spiral angle, but by making a. = $, an approximate angle, then

N = CPn cos <, or an exact number of teeth, after which, as

shown in the following, an exact angle a can be found, for

N N
Pn COS a Pn COS j8

where a is the exact spiral angle of one gear, and /3 the exact

spiral angle of the other, but /3
= 90 a, or cos = sin a.

Then,

PnCOSa Pn since

or

I I 2 CPn

cos a sin a N
Multiplying by sin a cos a gives:

2 CPn
sin a. + cos a =

77-^ sin a cos a.

Squaring,

sin2 a -f 2 sin a cos a -f COS2 a = ~
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But
2 sin a cos a = sin 2 a, and sin

2 a + cos2 a = i.

Further,
sin2 a cos2 a = | sin2 2 a.

Then

I + sin 2 a = Sin 2 a

or

sm 2 a - 2 a =

Solving this equation we get:

N2 >rw
c2Pn

2 + \2C2pn
2
/

sin 2 a =

which is the equation for finding twice the required angle.

Formulas, Case 6

Gears have same direction of spiral but prob-

ably different pitch diameters and spiral

angles; the sum of the latter must be 90

degrees.

Given or assumed:

1. Position of gear having right- and left-

hand spiral depending on rotation

and direction in which thrust is to be

received.

2. Pn = normal pitch (pitch of cutter).

3.
= approximate spiral angle of one gear.

4. C = center distance.

5. ]V = number of teeth = nearest whole number to CPn X
cos 0.

To find:

i. a =
spiral angle of one gear.

N2

sin 2 a.

C2P
/JVM
\2 C2P 2

/

2. /3
=

spiral angle of other gear = 90 a.

N
3. D = pitch diameter of one gear = Pn cos a
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4. d pitch diameter of other gear =

5. O outside diameter of one gear = D +

6. o outside diameter of other gear = d+-~
* n

7. T = number of teeth marked on cutter for one gear

COS^O!

8. t = number of teeth marked on cutter for other gear

N
cos3

/3

9. L = lead of spiral for one gear = irD cot a.

10. / = lead of spiral for other gear = nd cot ft.

Example
Given or assumed:

i. See illustration. 2. Pn = 10. 3. <f>
= 45 degrees.

4. C 4 inches.

5. N = CPcos< = 4 X 10 X 0.70711 =
28.28, say 28 teeth.

To find:

1. sin 2 a 0.98664, or a = 40 19'.

2. ft
= 90 a = 49 41'.

3. D = = 2 =
3.672 inches.

Pn COS 10 X 0.76248

N 28
4. a = = = 4.328 inches.

Pn cos ft 10 X 0.64701

5.
= 3.672 + 0.2 = 3.872 inches.

6. o = 4.328 + 0.2 = 4.528 inchest

N 28 ,,

i =
7 7-7-,

=
63.6, say 64 teeth.

cos3 a (o.762)
3

N 28 .,=
7 T

r-,
=

103.8, say 104 teeth.
cos3

ft (o.647)
3

9. L = 7rZ>cota = 3.1416 X 3.672 X 1.1787 = 13.597 inches.

10. / = -n-dcotft = 3.1416 X 4.328 X 0.84841 =
11.536 inches.

7. Shafts at Right Angles, Ratio Unequal and Center Distance

Approximate. Here the only two terms which may not be
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decided upon at the outset are the number of teeth in each gear.

Each, of course, must be a whole number and correspond with

the center distance, angle of spiral and normal pitch. Let

N n

and
Pn COS a Pn COS j8

Then

N
7?= K,

n

Rn

or N = Rn.

n = 2C.
Pn COS/3

Multiply by Pn cos a cos 0. Then

Ifo cos ]8 + ft cos a = 2 CPn cos a cos

^ (.R cos |8 + cos a)
= 2 CPn cos a cos j8,

and

n =
2 CPn cos a cos ]8

i? cos ]8 + cos a

which gives the number of teeth in the pinion in terms of the

center distance, angle of spiral and normal diametral pitch.

When a spiral angle of 45 degrees is used, the last formula

becomes, by substituting the numerical values of the cosine of

both angles, which is 0.70711:

_ 2 CPn 0.70711 X 0.70711

R X 0.70711 -f 0.70711
or

n = i.4iCPr

\

Formulas, Case 7

Sum of spiral angles of gear and pinion must equal 90 degrees.

Given or assumed:

1. Position of gear having right- or left-hand

spiral, depending on rotation and direc-

tion in which thrust is to be received.

2. C = approximate center distance.

3. Pn = normal pitch (pitch of cutter).

4. R = ratio of gear to pinion.



44 SPIRAL GEARING

/~* 7~)

5. n = number of teeth in pinion = ^^ -for 45 degrees;K + i

2 CaPn COS a COS (3 .

and - - for any angle.R cos ]8 + cos a

6. ./V = number of teeth in gear = nR.

7. a = angle of spiral on gear. .

8. /3
=

angle of spiral on pinion.

To find:

(a) When spiral angles are 45 degrees.
N

i. D =
pitch diameter of gear =

2. d =
pitch diameter of pinion =--

0.70711

3.
= outside diameter of gear = D + -~

iy

4. o = outside diameter of pinion = d -\
--
Pn

N
5. T = number of cutter (gear)

=-
-353

6. / = number of cutter (pinion) = -

0-353

7. L = lead of spiral on gear = irD.

8. / = lead of spiral on pinion = nd.

9. C = center distance (exact) = ^~
2

(b) When spiral angles are other than 45 degrees.

1.

3-

5-
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6. N = nR = 18 X 1.5
=

27 teeth.

7. a = 45 degrees. 8. = 45 degrees.

To find:

1. D = ^- = ?1 = 3.818 inches.

0.70711 Pn 0.70711 X 10

j n 18 . ,

2. d = = = 2.545 inches.
0.70711 Pn 0.70711 X 10

3.
= D + = 3.818 + .

= 4.018 inches.
rn 10

4. o = d + -^-
=

2.545 + =
2.745 inches.

rn 10

5. r = = -^- =
76.5, say 76 teeth.

0-353 0-353

6. t = -^- = -^- =
51 teeth.

0-353 0.353

7. L = irD = 3.1416 X 3.818
= 12 inches.

8. / = ird = 3.1416 X 2.545
= 8 inches.

n D + d 3.818 + 2.545 . ,

9. C = ! = fl ! ^^ =
3.182 inches.

2 2

8. Shafts at Right Angles, Ratio Unequal and Center Distance

Exact. This case is met with when two spiral gears are to re-

place two bevel gears, or when the conditions of the design de-

mand an exact center distance and unequal ratio. The normal

pitch, the ratio of number of teeth in large to small gear, the

exact center distance and the approximate spiral angle a of the

large gear are all given or assumed. Then the number of teeth

in the small gear is found from the formula:

2 CPn sin a.

H =
R tan a + i

which is found as follows:

Let
N

,

n _ zC
Pn COS a Pn COS |8

or twice the center distance, or

Pn cos a Pn sin a
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Let * = *, or N=Rn.
n

Then Rn n r
~i~ r

~~ 2 L/.

Pn cos a Pn sin a

Multiply by Pn sin a cos a. Then

ifo sin a + n cos a = 2 CPn sin a cos a,

ffc (^ sin a + COS a) = 2 CPn sin a COS a,

or 2 CPn sin a cos a
'ft

==
.R sin a + cos a

Divide by cos a. Then

2 CPr, sin a
n =

R tan a + i

2 CP
The formula R sec a + cosec a =

*, which is used in
n

finding the exact spiral angle, is found in the same manner as in

some of the preceding cases. Let,

N + TT^ = 2 C, and - = R, or N = Rn.
Pn COSa Pn COSj8 U

Then Rn
_

n

Pn cos a. Pn sin a

p
Multiplying by

-- we have:
n

R I 2CPn

cos a sin a

or R sec a + cosec a

This exact spiral angle is found by trial, by substituting values

found in a table of secants and cosecants in the equation after

the proper value of the last member in the equation has been

found from known values. About 45-degree angles will prob-

ably be the most used, unless, for some reason of design, the

spiral angle of one gear must be greater than that of the other.

In using trigonometric tables to find values to satisfy the equa-

tion given, use first tenths only for trial, then hundredths, and
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so on, as the required value is approached. This shortens the

work considerably. In solving this last equation, a table of

functions, giving values to minutes, is necessary, as the value

of its right-hand member must be to thousandths of an inch.

Formulas, Case 8

Gears have same direction of spiral. The sum
of the spiral angles will equal 90 degrees.

Given or assumed:

1. Position of gear having right- or left-hand

spiral depending on rotation and direc-

tion in which thrust is to be received.

2. Pn = normal pitch (pitch of cutter).

3. R = ratio of number of teeth in large

gear to number of teeth in small gear.

4. aa = approximate spiral angle of large gear.

5. C = exact center distance.

To find:

1. n = number of teeth in small gear nearest

2 CPn SJn Pig

i + R tan aa

2. N = number of teeth in large gear = Rn.

3. a exact spiral angle of large gear, found by trial from

2 CPnR sec a -\- cosec a. =
n

4-

5-

6.

8.

9-

= exact spiral angle of small gear = 90 a.

ND =
pitch diameter of large gear =

d =
pitch diameter of small gear =

Pn cos a

n

PnCOS/3

O = outside diameter of large gear = D -f
Pn

o = outside diameter of small gear = d +
Ln

T = number of teeth marked on cutter for large gear
N

cos3 a
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10. / = number of teeth marked on cutter for small gear

n~
cos3

11. L = lead of spiral on large gear = irD cot a.

12. I = lead of spiral on small gear = ird cot/3.

Example

Given or assumed:

1. See illustration 2. Pn = 8. 3. R =
3.

4. aa = 45 degrees. 5. C = 10 inches.

To find:

2 CPn sin a 2 X 10 X 8 X 0.70711!..*- - =- *-* =
28.25, say

I +R tan aa i + 3

28 teeth.

2. N = En =
3 X 28 = 84 teeth.

2 CPn 2X10X8 fc0

~

,

3. A sec + cosec a =- =-- =5.714, or a =46 6.
W 2o

4. j3
= 90

- a = 90
-

46 6' = 43 54'.

N 84 i.

5. D = - = --
*;
- = 15.143 inches.

8X0.6934
>

:

j n 28 . ,

6. a = - = -- = 4.857 inches.
Pn cos|3 8X0.72055

7.
= D + -^

= 15.143 + o- 2 5
=

!5-393 inches.
*

2
8. o = d + ^~

=
4-857 + 0.25 = 5.107 inches.

* n

9. T = ~ = = say 252 teeth.
cos3 a 0.333

10. / = : - =- = say 75 teeth.
cos3

/? 0.374

11. L irDcota =
3.1416 X 15.143 X 0.96232 =

45.78 inches.

12. / = TrJcotjS = 3.1416 X 4.857 X 1.0392
=

15.857 inches.

Shafts at a 45-degree Angle. In the following four cases

formulas will be given for calculating spiral gears with a shaft

angle of 45 degrees. As seen in Fig. 31 the treatment, as far as

the design is concerned, will be the same for a i35-degree shaft
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\

angle as for an angle of 45 degrees. Thrust diagrams, Figs. 13

to 28, are given as an aid in determining the direction of thrust

and rotation, and the direction of spiral, whether right- or left-

hand. The arrows shown indicate the direction of the reaction

against the thrust caused by the tooth pressure.

The relation between the direction of rotation, direction of

spiral and spiral angle may be studied in Figs. 32 and 33. In

Fig. 32 two spiral gears are shown, one in front of the other,

with shafts at an angle of 45 degrees to each other. Line AB
represents a right-hand

spiral tooth on the front

side of gear C. Assume

gear C to rotate in the

direction shown; then

when the toothAB reaches

the rear side, it will be

represented by line EF,
which also represents the

tooth direction on the

front side of gear G. Angle
BOH equals angle EOH,
and it will be seen directly

that the spiral angle of

either gear equals 45 de-

grees minus the spiral

angle of the other, both

gears being right-hand. In Fig. 33 the spiral angles are shown

to be of opposite hand, and one spiral angle is 45 degrees plus

the other angle. From these illustrations we may draw the

following conclusions relative to gears with a shaft angle of 45

degrees :

When the spiral angle of either gear is less than 45 degrees,

then the spiral angles are the same hand, and one spiral angle

is 45 degrees minus the other. When the spiral angle of either

gear is greater than 45 degrees, then the spiral angles are of

opposite hand, and the spiral angle of one gear is 45 degrees

plus the spiral angle of the other.

Machinery

Fig. 31. Diagrammatical View showing Gen-
eral Arrangement of Spiral Gearing with
Shafts at a 45-degree Angle
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9. Shafts at a 45-degree Angle, Ratio Equal and Center Dis-

tance Approximate. As already stated, the spiral angle of one

gear must equal 45 degrees plus or minus the spiral angle of the

other. The formulas in Part (a) in the following are to be used

when the spiral angles of both gears are 22J degrees, which will

often be the case. The pitch diameter of both gears will be

equal, and are found by the formula (see below for notation):

N N

Further

D =

T =

Pn COS22f

N
0.92388 Pn

N
COS 0.788

L =
7rZ>COt22j = 7.584!).

Machinery

Figs. 32 and 33. Relation between the Spiral Angles of Teeth in
Two Gears

The other formulas are the same as those given in the preced-

ing cases. Part (b) is used for unequal spiral angles.

Formulas, Case 9

The sum of the spiral angles of the two gears

equals 45 degrees, and the gears are of the

same hand, if each angle is less than 45

degrees. The difference between the spiral

angles equals 45 degrees, and the gears are

of opposite hand, if either angle is greater than 45 degrees.

Given or assumed:

i. Hand of spiral, depending on rotation and direction in

which thrust is to be received.
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2. Ca = approximate center distance.

3. Pn = normal pitch (pitch of cutter).

4. a = angle of spiral of driving gear.

5. /3
= angle of spiral of driven gear.

s *r u r 4. 4.
2 C*Pn COS a COS j8

6. A' = number of teeth nearest
cos a + cos /3

To find:

(a) When spiral angles are 22! degrees.

N
1. D = pitch diameter =

0.9239 Pn

2
2. = outside diameter = D +

3. T = number of teeth marked on cutter = N+ 0.7880

4. L = lead of spiral
=

7.584!).

5. C = center distance = ZX

(&) When spiral angles are other than 22^ degrees.

N
i. D pitch diameter of driver =

Pn cos a

N
2. d = pitch diameter of driven gear = Pn cos/3

2

3.
= outside diameter of driver = D + =-

-t n

rt

4. o = outside diameter of driven gear = d +
4

5. T
1 = number of teeth marked on cutter for driver

= N -T- COS3 a.

6. t = number of teeth marked on cutter for driven

gear = N -7- cos3
0.

7. Z, = lead of spiral for driver = irD cot a.

8. / = lead of spiral for driven gear = ird cot 0.

9. C = actual center distance = sum of pitch radii.

Example
Given or assumed:

i. See illustration. 2. Ca = 4 inches.

3. Pn = 10. 4 and 5. a =
/3
= 22^ deg.

6. tf = 37.
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To find:

N ^7
1. D = - = - ** = 4-005 inches.

0.9239 Pn 0.9239X10
2 2

2. = D + = 4.005 H =
4.205 inches.

3. T = N H- 0.788
= 37 -s- 0.788

= 47 teeth.

4. L = 7.584!)
= 7.584 X 4-005 = 30.374 inches.

10. Shafts at a 45-degree Angle, Ratio Equal and Center

Distance Exact. Following the same method of reasoning as

in Case (6), the approximate number of teeth in each gear is

found from the equation:
N N r= 2 C

Pn COS aa Pn COS

from which, multiplying by Pn cos a cos a ,

N cos j3a + N cos o!a = 2 CPn cos aa cos j8a ,
or

^. =
2 CPn COS o;a COS ft,

cos
j(3 + cos a

After the exact number of teeth to be used in each gear is

found from the last equation, the spiral angles are found from

the same equation used in finding the approximate number of

teeth.

N N
Let

1

= 2 C. where a and are now the
Pn cos a Pn cos

exact spiral angles. The secant being the reciprocal of the cosine,

N N 2 CP
- sec a + sec = 2 C, or sec a + sec =

rp
-t n ^n -^V

By using a table of secants, reading to minutes, angles can be

found to satisfy this equation, after very few trials.

Formulas, Case 10

The sum of the spiral angles of the two gears

equals 45 degrees, and the gears are of the

same hand, if each angle is less than 45 de-

grees. The difference between the spiral

angles equals 45 degrees, and the gears are

of opposite hand, if either angle is greater

than 45 degrees.
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Given or assumed:

1. Hand of spiral, depending on rotation and direction in

which thrust is to be received.

2. Pn = normal pitch (pitch of cutter).

3. C = center distance.

4. aa = approximate spiral angle of one gear.

5. j3
= approximate spiral angle of the other gear.

, , T .

'

, ,2 CPn COS aa COS^ftj
6. N = number of teeth nearest

cos ata 4- cos ft,

To find:

i. a and |8
= exact spiral angles found by trial from sec a +

N
2. D = pitch diameter of one gear = Pn COS a

N
3. d =

pitch diameter of the other gear = Pn cos j3

2
4.

= outside diameter of one gear = D + -

* n

5. o = outside diameter of other gear = d +
* n

6. T = number of teeth marked on cutter for one gear
= N -r- COS3

0!.

7. / = number of teeth marked on cutter for other gear

8. L = lead of spiral for one gear = TT/) cot a.

9. / = lead of spiral for other gear = ird cot 0.

Given or assumed:

i. See illustration. 2. Pn = 8. 3. C = 10 inches.

4. aa
= 15. 5. & = 30.

6 _ 2 CPn cos aa cos ft, _ 2 X io X 8 X 0.96593 X 0.86603

cos aa + cos ftj 0-96593 + 0.86603
= 73 teeth.

To find:

, t n 2 X io X 8
i. a and |8 from seco: + sec/3=

- - =- = 2.1918;^ 73

by trial a and 0, respectively,
= i444' and 30 16'.
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N 7^
2. D = = /0 = 9435 inches.

8X0.96712

S- d = =
, ,

= 10.565 inches.
Pn cosj8 8X0.86369

4.
= D + - = 9435 + f

=
9'685 inches.

Jrn o

5. o = d + - =
10.565 + f

= 10.815 inches.
jTn 5

6. T = N -r- cos3 a =
73 -r- 0.904 = 8 1 teeth.

7. / = N -r- cos3
j8
=

73 -T- 0.645
= JI3 teeth.

8. L = irD cot a = TT X 9435 X 3.803
=

112.72 inches.

9. / = ird cot |8
= TT X 10.565 X 1.714

=
56.889 inches.

ii. Shafts at a 45-degree Angle, Ratio Unequal and Center

Distance Approximate. A formula for finding the number of

teeth in the small gear is found from the equation:

N n
j ____ n (" p Z ^/

by solving for the value of n, the relation of N to n being:

R = ~
,
or N = Rn.

n

Then multiplying by Pn cos a cos /3, we have:

N cos + n cos a = 2 CPn cos a cos /3

and substituting Rn for N:

_ 2 CPn COS a COS )8

.R cos |8 + cos a

After finding the number of teeth N from the relation Rn = N,

the pitch diameters are found in the manner previously described.

In Part (a) are given the formulas to be used when both spiral

angles are 22^ degrees. The constants were found from the

numerical values of the functions in the formulas of Part (&),

which latter formulas are used for unequal spiral angles in the

two gears.

Formulas, Case n
The sum of the spiral angles of the two gears equals 45

degrees, and the gears are of the same hand, if each angle is
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less than 45 degrees. The difference between

the spiral angles equals 45 degrees, and the

gears are of opposite hand, if either angle is

greater than 45 degrees.

Given or assumed:

1. Hand of spiral, depending on rotation

and direction in which thrust is to be received.

2. Ca = center distance.

3. Pn = normal pitch (pitch of cutter).

4. R = ratio of gear to pinion, N -5- n.

5. a = angle of spiral on gear.

6. /3
= angle of spiral on pinion.

- ^ xl_ . . . ,
2 CgPn COS a COS /3

7. n number of teeth in pinion nearestR̂ cos |8 + cos a

8. N = number of teeth in gear = Rn.

To find:

(a) When a = = 22^ degrees.

N
i. D =

pitch diameter of gear =

55

2. d =
pitch diameter of pinion =

0.9239 Pn

n

0.9239 Pn

3. O outside diameter of gear = D +
* n

4.
= outside diameter of pinion = d +

in

5. T = number of teeth marked on cutter for gear
= N -f- 0.788.

6. / = number of teeth marked on cutter for pinion
= n -f- 0.788.

7. L = lead of spiral on gear = 7.584!).

8. / = lead of spiral on pinion = 7.584^.

9. C = actual center distance =
2

(6) When a and are any angles.

i. Z) = pitch diameter of gear =
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2. d = pitch diameter of pinion = Pn cos/3

2

3.
= outside diameter of gear =D -\

* n

4. o = outside diameter of pinion = d +
*n

5. T
1 = number of teeth marked on cutter for gear

= N -r- COS3
a.

6. t = number of teeth marked on cutter for pinion
= n -T- cos3

/3.

7. L = lead of spiral on gear = wD cot a.

8. / = lead of spiral on pinion
= ird cot /3.

9. C = actual center distance = -

Example
Given or assumed:

i. See illustration. 2. C = 12 inches. 3. Pn = 6.

4. j =
3. 5. a = 20 deg. 6. j8

= 25 deg.

_ 2 CPn cos a cos j8 _ 2 X 12 X 6 X 0.93969 X 0.90631
^'

J cos + cos a (3 X 0.90631) + 0.93969
= 34 teeth, approx.

8. N = Rn =
3 X 34 = 102 teeth.

To find:
AT IO2

1. Z) = = = 18.091 inches.
Pn cos a 6 X 0.93969

2. d = = 34
,

= 6.252 inches.
Pn cos/3 6X0.90631

3.
= Z> + ~ = 18.091 H- 1

= 18.424 inches.
-t n O

o ^

4. o = d H- = 6.252 + - = 6.585 inches.
./ n O

5. T = N -r- COS3 a = 102 -r- 0.83
= 123 teeth.

6. t = n -r- cos3 18
= 34 -r- 0.744

= 46 teeth.

7. L = irD cot a = TT X 18.091 X 2.747
= 156.12 inches.

8. / = TrdcotjS = TT X 6.252 X 2.145
= 42.13 inches.

D -\- d 18.001+6.252 . ,

o. C = = ^ ! *- = 12.1715 inches.
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12. Shafts at a 45-degree Angle, Ratio Unequal and Center

Distance Exact. This case could be used under the same con-

ditions spoken of in Case (8). The number of teeth is found

exactly as in Case (n), after which the exact spiral angles are

found by trial from the equation:

n

which, in turn, is found from the equations

5-^ + ^T = 2C, and N = En
Pn cos a Pn cos p

in the same manner as before. When using these equations for

finding spiral angles, the trigonometrical tables used must give

values to minutes in order to insure accuracy.

Formulas, Case 12

The sum of the spiral angles of the two gears

equals 45 degrees, and the gears are of the

same hand, if each angle is less than 45 de-

grees. The difference between the spiral

angles equals 45 degrees, and the gears are

of opposite hand, if either angle is greater

than 45 degrees.

Given or assumed:

1. Hand of spiral, depending on rotation and direction in

which thrust is to be received.

2. Pn normal pitch (pitch of cutter).

3. R = ratio of large to small gear = N -5- n.

4. aa = approximate spiral angle of large gear.

5. j8
= approximate spiral angle of small gear.

6. C = center distance.

7 . n = number of teeth in small gear nearest
--- -
R COS fa + COS aa

8. N = number of teeth in large gear = Rn.

To find:

i. a and |8, exact spiral angles, by trial from R sec a + sec P
2CPn

r\\
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N
2. D = pitch diameter of large gear =

3. d =
pitch diameter of small gear =

Pn cos a

n

PnCOS/3

2
4. O = outside diameter of large gear = D

L-n

sy

5. o = outside diameter of small gear = d -+-
-

* n

6. T = number of teeth marked on cutter for large gear
= N -T- COS3 a.

7. / = number of teeth marked on cutter for small gear
= n -7- cos3

]8.

8. Z, = lead of spiral for large gear = irD cot a.

9. / = lead of spiral for small gear = ird cot /3.

Example
Given or assumed:

i. See illustration. 2. Pn = 4. 3. J2 = 4.

4. aa = 50 degrees. 5.
=

5 degrees. 6. C = 30 inches.

_ 2CPn COSa;aCOS)8o __ 2X30X4X0.643X0.996 _ ," ~
(4 X 0.996) +0.643

8. N = Rn = 4 X 33 = 132 teeth.

To find:

1. aand/3fromseca + sec/3 = ^^-n = 2X3oX4 = 7.273;n 33

by trial a = 50 21', and j8
=

5 21'.

2. D = - =-^ = 51.716 inches.
Pncoso: 4X0.63810

3. d = n
n =-M = 8.286 inches.

Pn cos 18 4 X 0.99564
sy sy

4.
= D -f = 51.716 + - = 52.216 inches.

-Tn 4

5. o = d + ~ = 8.286 + - =
8.786 inches.

rn 4

6. T = N + cos3 a = 132 -J- 0.26 = 508 teeth.

7. t = n + cos3
/3
= 33 -T- 0.987 = 33 teeth.

8. L = TrDcota = TT X 51.716 X 0.82874 = 134.6 inches.

9. I = 7rdcot/3 = TT X 8.286 X 10.678
= 278 inches.
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Spiral Gears with Shafts at Any Angle. When designing

spiral gears with shafts at an angle other than 90 degrees to

each other, it is of considerable advantage to draw the outline

of one gear on a piece of drawing paper tacked to the board, and

the outline of the other on a piece of tracing paper, as indicated

in the accompanying engraving, Fig. 34. In this way the gear
drawn on the tracing paper can be moved about to thp correct

angle with relation to the gear beneath, and the conditions of

\

Machinery

Fig. 34. Method of using Tracing Paper for Spiral Gear Problems

thrust, direction of rotation and hand of spiral can be more

easily determined. The thrust diagrams, Figs. 13 to 28, apply
also to the gears at present dealt with. With the shafts at any

given angle, the sum of the spiral angles of the two gears must

equal the angle between the shafts, and the spiral must be of

the same hand in both gears, if each spiral angle is less than the

shaft angle; but if the spiral angle of one of the gears is greater

than the shaft angle, then the difference between the spiral angles

of the two gears will be equal to the shaft angle, and the gears
will be of opposite hand.
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Detailed explanation of the derivation of the formulas in the

following four cases is unnecessary, as these are arrived at in a

manner similar to that referred to in the previous cases. It

may be mentioned, however, with relation to Case (15) that the

formula for the number of teeth in the smaller gear, in the case

when both have the same spiral angles, is found by substituting

cos a for cos j8 in the formula:

2 CgPn cos a cos |8

R cos |8 + cos a

from which we get the number of teeth in the pinion:

2 CaPn COS a COS a _ CgPn COS a

R cos a + cos a R + i

In Case (16) it sometimes happens, after the exact spiral

angles a and /3, and the corresponding pitch diameters have been

determined, that the center distance does not come exactly as

required, within a few thousandths inch. Theoretically it would

then be necessary to alter the spiral angles found from one-

quarter to one-half a minute, in order that the center distance

may figure out correctly. However, this refinement is of doubt-

ful practical value, as it would be impossible to set the machine

on which the gears are to be cut to such a minute sub-division

of a degree.

13. Shafts at any Angle, Ratio Equal, Center Distance Approx-
imate. The sum of the spiral angles of the two gears equals

the shaft angle, and the gears are of the same

hand, if each angle is less than the shaft

angle. The difference between the spiral

angles equals the shaft angle, and the gears

are of opposite hand, if either angle is greater

than the shaft angle.

Given or assumed:

1. Hand of spiral, depending on rotation and direction in

which thrust is to be received.

2. Ca = approximate center distance.

3. Pn = normal pitch (pitch of cutter).

4. a = angle of spiral of one gear.
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5. /3
= angle of spiral of other gear.

* mr r 4. * 2 Ca^n COS COS |8
6. TV = number of teeth nearest - -

cos a + cos /3

To find:

1. Z) = pitch diameter of one gear =
Pn cos a

N
2. d =

pitch diameter of other gear =

3. O = outside diameter of one gear = D + -

Pn

4. o = outside diameter of other gear = d + -

5. T = number of teeth marked on cutter for one gear
= TV -7- COS3

a.

6. t = number of teeth marked on cutter for other gear

7. L = lead of spiral for one gear = irD cot a.

8. / = lead of spiral for other gear = ird cot /3.

9. C = actual center distance =

Example

Given or assumed (angle of shafts, 30 degrees) :

i. See illustration. 2. Ca = 5 inches. 3. Pn = 10.

4. a = 20 degrees. 5. /3
= 10 degrees. 6. N = 48.

To find:

r, N 48 . ,

1. D = = :n = 5.108 inches.
Pn cos a 10 X 0.9397

TV 48
2. d = - - = ^ - = 4.874 inches.

Pn cos j8 10 X 0.9848

3. O = D + -J-
= 5.108 + =

5.308 inches.
-T n IO

4. o = d + = 4.874 H = 5.074 inches.

5. T = N -^ cos3 a = 48 -T- 0.83
= 58 teeth.

6. / = N -T- cos3 = 48 -T- 0.96 = 50 teeth.

7. L = wDcota = TT X 5.108 X 2.747
= 44.08 inches.
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-

'

8. / = 7r^cot/3 = TT X 4-874 X 5.671 = 86.84 inches.

~ D + d 5.108 + 4.874
9- C = = - ~ ~ =

4-99i inches.

14. Shafts at Any Angle, Ratio Equal, Center Distance

Exact. The sum of the spiral angles of the two

gears equals the shaft angle, and the gears are

of the same hand, if each angle is less than the

shaft angle. The difference between the spiral

angles equals the shaft angle, and the gears are

of opposite hand, if either angle is greater than the shaft angle.

Given or assumed:

1. Hand of spiral, depending on rotation and direction in

which thrust is to be received.

2. C = center distance.

3. Pn normal pitch (pitch of cutter).

4. oLa = approximate spiral angle of one gear.

5. j8a
= approximate spiral angle of other gear.

6. -N = number of teeth nearest
2 CPn cos a" cos ^a

cos aa + cos /3a

To find:

i. a and 13
= exact spiral angles, found by trial from sec a +

N
2. D = pitch diameter of one gear = Pn COS a

N
3. d = pitch diameter of other gear =-Pn cos/3

r\

4.
= outside diameter of one gear = D -\

--
*

5.
o = outside diameter of other gear = d +

*

6. T = number of teeth marked on cutter for one gear
= N -T- COS3 a.

7. t number of teeth marked on cutter for other gear
= N -5- cos3

18.

8. L = lead of spiral for one gear = irD cot a.

9. I = lead of spiral for other gear = ird cot 0.
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Example

Given or assumed (angle of shafts, 50 degrees) :

i. See illustration. 2. C = 10 inches. 3. Pn = 10.

4. aa
= 20 deg. 5. (3 a

= 30 deg.

2 CPn cos a cos /3a 2 X 10 X 10 X 0.93969 X 0.86603
Q ^y =- = '

COS Cia -}- COS /?o 0.93969 + 0.86603
= 90 teeth.

To find:

n , 2 CPn 2 X 10 X 10
1. a and |8 from sec a + sec /3

= =- = 2.222;N 90

by trial a and 0, respectively,
= 19 20' and 30 40'.

2. D = =-^ = ^ = 9-537 inches.
Pn cosa 10X0.94361
N go , . ,

7. d =- =-*- = 10.463 inches.
Pn cos/3 10X0.86015

4.
=
D+j-

= 9.537 +^ =
9-737 inches.

5. o = d +~ = 10.463 + = 10.663 inches.

6. T = N -i- cos3
o: = 90 -s- 0.84 = 107 teeth.

7. t = N -r- cos3
18
= 90 -T- 0.64 = 141 teeth.

-8. L = irDcota = TT X 9-537 X 2.85
= 85.39 inches.

9. / = TrJcotjS = TT X 10.463 X 1.686 = 55.42 inches.

15. Shafts at Any Angle, Ratio Unequal, Center Distance

Approximate. The sum of the spiral angles of the two gears

equals the shaft angle, and the gears are of

the same hand, if
(
each angle is less than the

shaft angle. The difference between the

spiral angles equals the shaft angle, and the

gears are of opposite hand, if either angle is

greater than the shaft angle.

Given or assumed:

1. Hand of spiral, depending on rotation and direction in

which thrust is to be received.

2. C = center distance.

3. Pn = normal pitch (pitch of cutter).

*

T
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4. R = ratio of gear to pinion = N -* n.

5. a = angle of spiral on gear.

6. /3
= angle of spiral on pinion.

7. n = number of teeth in pinion nearest
2 C*P COSQ!COS ft

R cos |8 + cos a

for any angle, and
" - when both angles are equal.

8. N = number of teeth in gear = Rn.

To find:

N
1. D =

pitch diameter of gear = -
Pn cos a

2. d =
pitch diameter of pinion = -

Pn cos/3

3. O = outside diameter of gear = Z> +
*

4. o = outside diameter of pinion = d H

5- T = number of teeth marked on cutter for gear =N -=- cos3
a.

6. / = number of teethmarkedon cutter for pinion = H-T- cos3
/3.

7. L = lead of spiral on gear = irD cot a.

8. / = lead of spiral on pinion = ird cot 0.

9. C = actual center distance =
2

Example
Given or assumed (angle of shafts, 60 degrees) :

i. See illustration. 2. Ca = 12 inches. 3. Pn = 8.

4- R =
4- 5. a = 30 degrees. 6. /3

= 30 degs.
2 CaPn cos a 2 X 12 X 8 X 0.86603
R 4- 1 T 33 teeth.

8. tf = 4 X 33 =
132 teeth.

To find:

= D + - =
19.052 + - =

19.302 inches.
f-n O
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4. o = d + T~ =
4.763 + 1

=
5-OI3 inches.

-r o

5. T = N -T- cos3 a =
132 -5- 0.65

= 203 teeth.

6. / = a -i- cos3
/3
=

33 -T- 0.65
=

51 teeth.

7. Z, = irDcota = TT X 19.052 X 1.732
= 103.66 inches.

8. I = TrdcotjS = TT X 4.763 X 1.732
= 25.92 inches.

~
C = D d io.cX2 + 4.763 . ,

- = -* = 11-9075 inches.

16. Shafts at Any Angle, Ratio Unequal, Center Distance

Exact. The sum of the spiral angles of the two gears equals

the shaft angle, and the gears are of the same

hand, if each angle is less than the shaft

angle. The difference between the spiral

angles equals the shaft angle, and the gears

are of opposite hand, if either angle is greater

than the shaft angle.

Given or assumed:

1. Hand of spiral, depending on rotation and direction in

which thrust is to be received.

2. C = center distance.

3. Pn = normal pitch (pitch of cutter).

4. aa = approximate spiral angle of gear.

5. ft,
= approximate spiral angle of pinion.

6. R = ratio of gear to pinion
= N -=- n.

. , , . . . ,2 CPn COS CLa COS a

7. n = number of teeth in pinion nearest
R COS /3 + COS Ota

8. N = number of teeth in gear
= Rn.

To find:

i. a and |8, exact spiral angles, found by trial from R sec a

n
NN

2. D = pitch diameter of gear = Pn COS OL

3. d =
pitch diameter of pinion

=

4.
= outside diameter of gear =D +

* n
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5. o outside diameter of pinion = d + -

* n

6. T = number of teeth marked on cutter for gear =N -f- cos3
a.

7. / = number of teethmarkedoncutter forpinion = w-f- cos3
0.

8. L = lead of spiral on gear = irD cot a.

9. / = lead of spiral on pinion = ird cot ft.

Example

Given or assumed (angle of shafts, 60 degrees) :

i. See illustration. 2. C = 40 inches. 3. Pn = 4.

4. aa
= 20 degrees. 5. fta

= 40 degrees. 6. J? = 3.

_ 2 CPn cos <*a cos ffa = 2 X 40 X 4 X 0.9397 X 0.766

R cos fta + cos aa (3 X 0.766) + 0.9397
=

71 teeth.

8. # = Rn =
3 X 71

= 213 teeth.

To find:

1. a and 0from #seca+sec/3 = ^^ = 2 X 4 X 4 = 4.507;n 71

by trial a = 22 24' 30" and ft
= 37 35' 30".

N 213
2. D -= = " = 57.599 inches.

Pn cos a 4 X 0.92449

j n 71 . ,

V a = = ~ = 22.401 inches.
Pn cos(3 4X0.79238

4. O = Z> + = 57.599 + - =
58-099 inches.

*n 4

, . 2 .2 . ,

5. o = d + = 22.401 + - =
22.901 inches.

Pn 4

6. T = N -s- cos3 a = 213 -s- 0.79 = 270 teeth.

7. / = w -r- cos3
ft
=

71 -T- 0.497
= J43 teeth.

8. L = TT!) cot a = TT X 57.599 X 2.4252 =
438.8 inches.

9. / = TrJcotjS = TT X 22.401 X 1.2989
=

91.41 inches.

Special Case of Spiral Gear Design. The following method

is used when the distance between the centers of the shafts, the

speed ratio and an approximate ratio of the pitch diameters of

the gears are given. (Shafts at 90 degrees angle.) In the

formulas, let:
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D = diameter of driver;

d = diameter of driven gear;

5 = speed of driver;

5 = speed of driven gear;

Pn = normal diametral pitch;

a =
angle of teeth in driver with its axis;

N = number of teeth in driver;

n = number of,teeth in driven gear;~

C = center distance.

Assume trial values for D and d\ then an approximate angle a

is derived from the formula:

ds f N-cot a. (l)

Then find by trial the number of teeth for each of the gears

which, with the given speed ratio, will most nearly satisfy the

equation :

C ^
4-

n
( ")

Pn cos a Pn sin a

Then make corrections of the angle a until a value is found

which exactly satisfies the last equation. This being done, the

pitch diameters are:

d = -
(4)Pn sina

Example. Find the diameters and angles of teeth of two

spiral gears with shafts at right angles; the distance between

the centers is 4^ inches, the speed ratio of the driver to the fol-

lower is 2 to i, and the ratio of D to d is about 9 to 8.

Following the method outlined:

ds 8 X i , ,,= = 0.444 = cot 66
, approx.

By trial it will be found that 14 and 28 teeth will nearly sat-

isfy Equation (2). Substituting these numbers of teeth and

the functions of 66 degrees in this equation, we have:
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14
,

28

8 X 0.4067 8 X 0.9135

~

Subtracting 8. 250 8.134 = 0.116.

We see that the angle of 66 degrees introduces an error of 0.116

inch for twice the distance between centers of shafts. This

shows that 66 degrees is not exactly the required angle. Trying
66 degrees 50 minutes, we have:

14____28__ ~

8 X 0.3934 8 X 0.9194

Subtracting 8. 2 54 8.250
= 0.004.

We see that 66 degrees 50 minutes is very close to the required

angle, as the error for twice the distance between the centers of

the shafts is now only 0.004 inch; trying an angle of 66 degrees

48 minutes, we have:

-H- +
*_- = 82.0

8 X 0.3939 8 X 0.9191

The angle of 66 degrees 48 minutes gives exactly the required
distance between centers. We can now use this angle in deter-

mining the required diameter for the driver and follower by sub-

stitution in Equations (3) and (4).

= 4442

=
3 '8 8 inches "

By reference to a table of natural functions, we find that sine

66 degrees 48 minutes equals cosine 23 degrees 12 minutes, and

this determines the angle of the teeth in the follower as 23 de-

grees 12 minutes.



CHAPTER III

HERRINGBONE GEARS

Definitions and Types of Herringbone Gears. - One of the

objectionable features of spiral gears is the end thrust necessarily

produced when these gears are in action. When spiral gears

transmit motion between two parallel shafts, this end thrust

may be avoided by placing two spiral gears side by side, having
teeth cut in opposite directions, as indicated at A, in Fig. i.

This type of gearing has been termed "
herringbone" gearing.

The placing of two spiral gears side by side, keyed to the same

shaft, has, however, certain disadvantages, because it is prac-

tically impossible, with ordinary means, to so cut the two gears

that the two halves will be in perfect mesh at all times, so that

each takes one-half the load. From a practical standpoint

herringbone gears have, therefore, been less satisfactory than

straight-cut spur gears, because until recently no method was

devised for producing them with commercial accuracy at a reas-

onable rate of speed.

In order to avoid using two separate gears, the two sets of

spiral teeth have been cut on the same blank, a groove being

formed in the center as indicated at B, Fig. i, and teeth cut on

each side. One method has also been developed for cutting the

two opposite spirals at the same time, as indicated at C. Cast

gears, of course, can be made in one piece, as indicated at D.

Within the last decade a method has been developed to a high

degree of perfection, by means of which herringbone gears can

be cut both rapidly and with commercial accuracy. The prin-

ciple of this method is indicated at E. Herringbone gears made

by this method are called Wuest gears, after the inventor. The
difference between these gears and those of the ordinary herring-

bone type is that the teeth of the former, instead of joining at

a common apex at the center of the face are stepped or staggered
69
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half of the pitch apart, and thus do not meet at all. This arrange-

ment of the teeth does not affect the action of the gears, but

facilitates their commercial production.

One type of gear, shown at F
}
is known as the Citroen gear.

In this type of gear the end thrust has been avoided by making
the teeth of a "wavy" form a multiple herringbone type.

Machinery

Fig. i. Diagrammatical Views of Different Types of Herringbone Gears

The difficulties of producing teeth of this kind are obvious and

the ordinary herringbone gear is, without question, the type
which meets the requirements better than any other method

for accomplishing the same result.

Cost of Herringbone Gears. The herringbone gear as com-

monly made would cost about twice as much as an equivalent

spur gear and is somewhat difficult to cut so that each gear will

carry half the load. These drawbacks have overshadowed its



HERRINGBONE GEARS 71

advantages for ordinary uses, and as a result its use is almost

unknown in the general run of machinery. The advent of the

hobbing process of cutting helical gears of the Wuest design,

which can be cut very cheaply, has made them available in prac-

tically every case, as far as cost is concerned, where spur gears

are used. The advantages of herringbone gears are such that

machine designers cannot afford to neglect them. The in-

formation given in the following is mainly from a paper presented

before the American Society of Mechanical Engineers by Mr.

Percy C. Day.

Requirements of Power Transmitting Mediums. The utili-

zation of power constantly calls for means to transmit rotary

motion from one axis to another. While there are many ways
in which such transmissions may be produced, the merits of all

of them must be judged from the following standards: (a) relia-

bility and freedom from wear and tear; (6) economy of outlay;

(c) mechanical efficiency; (d) compactness; (e) evenness of

transmission, absence of shock, jar or vibration; (/) absence of

noise.

Action of Spur Gearing. The aim of all designers of gearing

is to transmit rotary motion from one axis to another in a per-

fectly even manner without variation of angular velocity. Let

us consider the action of a straight spur pinion driving a gear.

There are three distinct phases of engagement:
First phase: The root of the pinion tooth engages the point of

the gear tooth.

Second phase: The teeth are engaged near the pitch line.

Third phase: The point of the pinion tooth engages the root

of the gear tooth.

Let us assume that the teeth are accurately cut to involute

form, so that if the pinion moves with even angular velocity it

will produce corresponding evenness of motion in the gear; and

also that the pinion has sufficient teeth to allow the engagement
of successive teeth to overlap. At the beginning of the first

phase, while the load is carried near the point of the gear tooth,

that tooth is subjected to a maximum bending stress along its

whole length. The portion of the pinion tooth near the root is
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sliding over the outer portion of the gear tooth; that is to say,

two metallic surfaces of small area are sliding under heavy com-

pression.

The action during the second phase more nearly approaches

ideal conditions. The teeth are engaged near their respective

pitch lines and very little sliding takes place. During the third

and final phase the pinion tooth is subjected to a maximum

bending stress, while the tooth surfaces again slide over each

other, this time with the outer portion of the pinion tooth en-

gaging the gear tooth near its root. The point to be noted is

that while those portions of the mating teeth which are near the

pitch lines transmit the load with rolling contact, those which

are more remote have to transmit the same load with sliding

contact. The inevitable result is that the points and roots of

all the teeth tend to wear away more rapidly than the portions

near the pitch lines.

It may be suggested that the sliding action can be eliminated

by shortening the teeth so that they engage only during the

phase of rolling contact. This has been tried with a certain

measure of success in the stub-toothed gear, but it cannot be

carried far enough without curtailing the arc of contact so that

continuity of engagement is lost.

Distortions of gear teeth of involute form, whether due to

inaccurate cutting or subsequent wear, give rise to all kinds of

trouble. The average angular velocity may be uniform, and

yet the passage of each pinion tooth through its brief engage-

ment with the mating gear may be accompanied by successive

retardation and acceleration which, though small in itself, takes

place in such a short interval of time that it may cause stresses

many tunes greater than the average working load on the teeth.

These internal stresses are very difficult to deal with, because

they are indeterminate. They cause noise, vibration, crystalli-

zation and fracture.

Action of Herringbone Gears. Herringbone gears completely

overcome all these difficulties, but only when they are accurately

cut. If we take two exactly similar pinions with straight teeth

and place them side by side on one shaft, with the teeth of one
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pinion set opposite the spaces of the other, then we have what

is known as a stepped-tooth pinion. If this pinion is meshed

with a composite gear made up in a similar manner, the action

is modified so that there are always two phases of engagement

taking place simultaneously. Such gears are commonly used for

rolling mill work, because they stand up to heavy shocks better

than the plain type. Still better action can be secured by as-

sembling a number of narrow pinions with the last of the series

one pitch in advance of the first and the others advanced by equal

angular increments. As a practical proposition, however, gears

made on these lines would be costly and difficult to produce.
The helical gear is the logical outcome of the stepped gear

carried to its limit, and built up from infinitely thin lamina-

tions. Since the steps have merged into a helix, there must

be a normal component of the tangential pressure on the teeth,

producing end thrust on the shafts. To obviate end thrust the

helical teeth are made right-hand on one side and left-hand on

the other. Such gears, as already stated, are known as herring-

bone gears.

The fundamental principle of the action of herringbone teeth

lies in the circumstance that all phases of engagement take place

simultaneously. This holds good for every position of pinion
and gear, provided only that the relationship between pitch,

face width and spiral angle is such as will insure a complete over-

lap of engagement. Since all phases of engagement occur to-

gether, it follows that the load is partly carried by tooth surfaces

in sliding contact and partly by surfaces in rolling contact. The
result is curious and interesting.

Those portions of the teeth farthest from the pitch line, which

engage with sliding action, tend to wear away more rapidly
than the portions nearest the pitch line; but the pitch line por-
tion is always carrying part of the load, and the effect of wear

on the ends of the teeth merely tends to throw more load on

the center portions; in other words there is a tendency to con-

centrate the load near the pitch lines. The ends of the teeth,

instead of wearing away to an ever-increasing extent from their

original involute form, are relieved of some of the load from the
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moment that wear commences to take place. As soon as the

load on these ends has been partially relieved and transferred

to the middle portion, the wear becomes equalized all over the

teeth and they do not tend to distort further from their original

shape.

It is quite clear that an unmeasurable amount of wear on the

tooth ends will be sufficient to relieve them of all the load, so

that the distortion from the original form will be practically

nothing. The minute extra wear that does take place at the

ends is only the amount necessary to transfer a certain propor-

tion of the load near the pitch lines, so that the wear is equalized

all over the surface of the teeth, those portions in sliding con-

tact carrying less than those in rolling contact.

Advantages Gained by Herringbone Gears. As the teeth

keep their involute form, motion is transmitted from the pinion

to the gear in an even manner, without jar, shock or vibration.

Although herringbone teeth may not be intrinsically stronger

than straight teeth, the elimination of shock renders them capable

of transmitting heavier loads. Since all phases of engagement

occur simultaneously, the transference of the load from one

pinion tooth to the next takes place gradually instead of sud-

denly. This is the second principle of herringbone gearing, and

may be termed continuity of action.

In straight gears the continuity of action is a function of the

number of teeth in the pinion. In herringbone gears continuity

depends on the relationship between the face width and the

number of teeth in the pinion. Pinions with as few as five teeth

have been used with success by merely increasing the face width

to suit such extreme conditions. This feature, which is peculiar

to herringbone gears, has made practical the adoption of ex-

tremely high ratios of reduction hitherto considered impossible.

The third principle of herringbone gearing is that the bend-

ing stress on the teeth does not fluctuate from maximum to

minimum as in straight gears, but remains always near the mean

value. This feature is of special importance in rolling-mill

driving and work of a similar nature.

To summarize the foregoing .statements: The action of her-
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ringbone gears is continuous and smooth; there is no shock of

transference from tooth to tooth; the teeth do not wear out of

shape; the bending action of the load on the teeth is less than

with straight gearing and does not fluctuate to anything like

the same extent; the gears work silently and without vibration;

back-lash is absent; friction and mechanical losses are reduced

to a minimum; herringbone gears can be used for higher ratios

and greater velocities than any other kind.

Production of Herringbone Gears. Herringbone gears may
be produced in a variety of ways which differ from each other

as widely as the character of the product. Until a few years

ago all gears of this type were molded. The limitations of

molded gearing are analogous to those which would be expe-
rienced if a journal were run in a molded bearing. Just as the

bearing would touch the shaft only in spots, so molded gears

fail to give the intimate contact all along the teeth which is

necessary to secure the realization of true helical gear action.

It is obvious that if the teeth touch only in a few high places,

they will be subjected to all the evils of shock, stress and in-

equality of motion which it is desired to avoid. If the gears

are particularly well molded, some mitigation of these evils

may be expected when they become well worn, but the initial

wear is accompanied by a departure from the correct tooth

shape.

For slow speeds a well-molded helical gear is no better than

a straight gear with cut teeth, and for high speeds it is not as

good. The natural smoothness of helical action does no more

than compensate for the inaccuracies of tooth form and spac-

ing. The modern herringbone gear must have cut teeth if its

advantages are to become realized.

One- and Two-piece Types. Cut herringbone gears may be

broadly divided into two classes, two-piece and one-piece gears.

The difficulty in the way of cutting double helical teeth in a

single blank gave rise to the two-piece variety. The same

methods of cutting may be used for both kinds. The disad-

vantages of the two-piece type are obvious. There is the expense
of two complete gears, the difficulty of assembling so that the
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gears be in accurate register with each other, and the necessity

for very thorough fastenings if they are to perform hard service

without getting out of register. High ratios are not within the

scope of the built-up gear, because the pinions must be assembled

on a separate shaft and the pitch line must be far enough from

the surface of the shaft to allow room for the necessary bolts

or rivets used in fastening the two portions together. The

one-piece pinion, however, may be cut solid with its shaft, so

that its pitch diameter need be but very little larger than the

latter.

The methods of cutting helical gears may be divided into four

classes: (a) milling by formed disk cutters; (b) milling by end-

mills; (c) generating by shaping or planing methods; (d) gen-

erating by hobs.

Milling by Ordinary Disk Cutters. Milling by formed disk

cutters is unsatisfactory, because, in addition to the usual errors

of step-by-step division, there is the difficulty of making the

cutters to the normal tooth shape with sufficient accuracy to

insure correct circumferential shape for the gears cut. This

difficulty is increased by reason of the fact that a disk cutter

cannot cut its own shape in a spiral groove. Let it be noted

that the cutters must be formed empirically, that their number

must be very large to meet the requirements of a general gear

business, and that the accuracy of each gear turned out depends
on the combined efforts of the toolmaker and draftsman who

produced the cutter. Worst of all, two different cutters must

be used for a gear and pinion. This method will produce in-

different herringbone gears whether they are built up with teeth

in register or made in one piece with staggered teeth.

Milling by End-mills. The use of end-mills is open to all

the objections to disk cutters, with the single exception that the

cutter does leave a fair approximation to its own shape in the

groove which it cuts; but the end-mill has a number of dis-

advantages peculiar to itself which render it even less efficient

than the disk cutter for general work. In the first place it is a

small tool with very little wearing surface and no capacity for

dissipating the heat generated at its cutting edges. The great
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variation in diameter between point and base renders it difficult

to arrive at a cutting speed which will satisfy the conditions at

both ends of the cut. The mills quickly become clogged with

cuttings, overheat and burn. To complete one fair-sized gear

by the end-mill process requires quite a number of cutters. This

not only makes the expense heavy, but must necessarily result

in an inaccurate gear.

Every cutter used must be formed to gage and hardened. After

being hardened, it will run a trifle out of true, in most cases,

thereby cutting a shape different from that for which it was

designed. In end-milled gears it is not merely a case of getting

accurate conjugate tooth shapes in gear and pinion made with

different cutters, but the teeth in a single gear may have a dozen

different shapes. The process is so slow that it cannot compete
with other methods, quite apart from the doubtful quality of

the gears produced.

End-milled herringbone gears are usually made in one piece

with the teeth joined at the center. Since the cutter is shaped
to the normal pitch, it follows that, in changing over from right-

to left-hand helix, it leaves a thick wedge in the center of the

face which must be removed by a subsequent operation. The

teeth of end-milled herringbone gears do not bear over the center

portion.

Planing the Gear Teeth. Generating processes of the shap-

ing and planing type, while successful for straight-cut gears of

relatively small size, are not used to any extent for large diam-

eters or heavy pitches. The reason for this may be found in the

nature of the processes. The gear blank is required to make a

quick angular movement after each stroke of the cutting tool

and to come to rest again before the next stroke. Such methods

are difficult to apply to large gears on account of the inertia of

the gear blank and its support and the consequent difficulties of

controlling the short intermittent movements. These difficulties

are much increased when such methods are applied to cutting

helical teeth because the blank must make definite and rapid

angular movements during each stroke in addition to the mo-

tion between strokes.
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The Robbing Process. The bobbing process as applied to

straight-cut gears has proved very successful, and it is not

difficult to understand why this process has sprung into prom-
inence in a comparatively short time. It is essentially a rational

process. The shape of the teeth is generated from spiral hobs,
the threads of which are cut to a plain rack section. One hob

will cut any gear or pinion of one pitch. This feature alone

eliminates a great many errors which are characteristic of gears

produced by milling methods. The hob revolves continuously
while cutting, as does the gear blank. The feed is also con-

tinuous. There are no cutting and return strokes, and no

intermittent starting and stopping of gear blanks, as in other

generating processes. These features do not necessarily insure

the production of accurate gears, but they offer greater facilities

to the designer for the achievement of the desired result.

The hob is a substantial tool with plenty of wearing and cool-

ing surface, and can be made to meet the demands of rapid

production and to last for a long time. The continuous nature

of all motions used in hobbing a gear blank enables this process

to be used for the production of the heaviest gears. The limit

to the size of a hobbing machine is set by the dimensions of the

largest gears which are required in sufficient quantities to pay
for the investment.

Nevertheless, there are some defects in the hobbing process
as applied to the production of straight-cut spur gears. A hob

is a worm thread, and as such must have a spiral angle depend-

ing on the relationship between the pitch of the thread and the

diameter of the hob. A straight-cut gear has no spiral angle,

hence the spiral hob must be inclined, more or less, to bring
the cutters in line with the tooth spaces to be cut. In order to

cut correct teeth, the axis of the hob should be perpendicular
to the axis of the gear blank. In such case the hob will generate

involute teeth if its threads are cut to the same axial section as

the straight-sided parent rack for the required pitch. Since

the hob must be inclined to cut a spur gear, the teeth are not

generated from the axial or rack section, but from a diagonal

section. The axial pitch of a hob for cutting spur gears is not
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the same as the pitch of the gears which it cuts. The normal

pitch of the hob threads must be the same as the gear pitch.

Hobs for cutting straight spur gears are usually made of large

diameter to reduce the spiral angle and consequent errors of

tooth form to a negligible minimum. As a natural consequence,

such hobs have only one thread, while their large diameter re-

quires a slow speed of rotation to keep the cutting speed within

proper limits. The effect of this is that the blank revolves very

slowly, and a coarse feed must be used to keep up the output.

It is one of the peculiarities of the hob action that only one

tooth of the hob puts the finishing touch to the bottom of a tooth

space once in each revolution of the gear blank. If the feed is

coarse, there will be noticeable feed marks and roughness in the

gear teeth produced. A coarse feed used with a hob of large

radius throws severe stresses on the hob arbor and its supports.

The necessity of a swivel motion on the hob slide, to enable

straight spurs to be cut with hobs of varying spiral angle, com-

pels the use of a hob drive which passes through the pivot. It

is almost impossible to design such an arrangement without

undesirable restriction in the dimensions of driving gears and

shafts combined with excessive overhang of the hob arbor in

relation to its supporting slide. The general lack of rigidity

about most hobbing machines used for the production of spur

gears is traceable to the above causes. Rational critics of the

hobbing process have based their objections on these features.

The hobbing process properly applied to the production of

herringbone gears has none of the disadvantages incidental to

its application to spur gear cutting, which have been shown to

lie in the necessity of inclining the hob axis. Since a helical gear

and a hob must both have a spiral angle, it is only necessary to

make the thread angle of the hob the complement to the corre-

sponding angle of the gear teeth to secure the advantages of

perpendicular fixed axes. This principle is of great practical

value. Since the hob axis is always perpendicular to the axis

of the gear blank, it follows that the teeth are generated from

the axial and true rack section of the hob, while the linear pitch

of the hob is the same as the circular pitch of the gear which it
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cuts. The hob axis is fixed and the hob can be supported on

a rigid slide with the minimum of overhang. There is no re-

striction to the size and strength of the gears and shafts used to

drive the hob.

Wuest Herringbone Gears. It has been explained that the

teeth of the Wuest gears are so designed that those on the right-

and left-hand sides of the gears are stepped half a space apart

and do not meet at a common apex at the center of the face,

as in the usual type of herringbone gear. It has often been

Machinery

Figs. 2 to 4. Diagrams showing Tooth Pressures and Angle
Necessary for Continuity of Action

argued that the ordinary herringbone tooth is stronger than the

Wuest tooth, because the latter lacks the support given by the

junction of the teeth at the center. This argument would be

sound if gear teeth were ever stressed to anywhere near their

breaking point. It has been found in practice that consider-

ations of wear so far outweigh those of mere breaking strength

that a gear which is designed to give reasonable service will carry

anywhere from ten to twenty times the working load without

fracture. A point of vastly greater importance is that the stepped

form will wear more evenly under extreme loads than the ordinary

type. The reason for this is shown in Figs. 2 and 3. The

resultant tooth pressure is always normal to the teeth and tends
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to bend them apart. The stepped form offers a uniform re-

sistance along its whole length, carrying the load from end to

end (Fig. 2). The teeth of ordinary herringbone gears tend to

separate more at the sides than near the supported center,

causing the load to be concentrated toward the center (Fig. 3).

Interchangeable Herringbone Gears. Any system of gear-

ing, if it is to be generally applied, must be interchangeable.

The variable features of involute spur gear teeth are limited to

the pressure angle, addendum and dedendum. In a herringbone

gear system, we must have, besides, uniformity of spiral angle

and relative position of the right- and left-hand teeth.

The standards which have been adopted for Wuest gears are

the result of experience gained in Europe during a period of

years. The spiral angle of the teeth is about 23 degrees with

the axis. The choice of this angle is controlled by a number of

considerations, the most important from the user's standpoint

being that the angle must be sufficient to allow the engagement
of successive pinion teeth to overlap within a reasonable face

width. Once this condition is satisfied, there is no advantage
,in an increase of spiral angle, while there are disadvantages in

the use of steep angles. It was necessary, before choosing a

definite spiral angle, to determine what constitutes a reasonable

face width for this class of gearing.

Width of Face and Spiral Angle. Since the nature of the

action eliminates shock, it follows that the pitch required for

given conditions will be much finer than would be chosen for

spur gears. On the other hand, the face width will not be less,

because there is as much necessity for wearing surface with one

kind of tooth as with the other. Spur gears are usually made

with a face width equal to three or four times the pitch. Her-

ringbone gears may conveniently have a face width equal to

six times the pitch, not because the width of this type actually

is greater, but because the pitch is proportionately less.

Starting with a width equal to six times the pitch, and allow-

ing a width equal to the pitch as the non-bearing portion at the

center, there remains two and one-half times the pitch available

for the teeth on each side. To insure continuity of engagement
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under all ordinary conditions, each tooth is inclined so as to cover

an advance equal to the pitch within its length. The angle of

23 degrees satisfies this requirement (see Fig. 4). There are a

few cases where an angle less than 23 degrees would be sufficient,

while a steeper angle is only needed if the available face width

has to be unduly restricted. Neither of these extreme condi-

tions should influence the choice of angle for an interchangeable

system best adapted for general use.

There are other good reasons why a moderate spiral angle is

to be preferred. In all spiral gears the pressure acts in a direc-

Machinery

Fig. 5. Diagrams showing Relation between Normal Pressure, Spiral
Angle and Available Normal Tooth Section

tion normal to the teeth and is the resultant of the tangential

(driving) and axial pressures. The normal pressure becomes

greater in proportion to the useful driving pressure as the spiral

angle is increased, while the available normal tooth section be-

comes less (see Fig. 5). When the spiral angle is considerably

steeper than the angle of repose for the materials in contact,

there is a tendency for the teeth to bind with a wedge action.

Herringbone gears with abnormally steep spiral angles show

loss of efficiency and increased wear from this cause.

Pressure Angle and Tooth Proportions. The pressure angle

which has been adopted for standard gears is 20 degrees. The
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teeth are shorter than the usual standards, as indicated by the

formulas in the following. These standards of tooth height and

pressure angle have been adopted after systematic trials and

experience extending over several years of regular manufacture.

The high ratios used with these gears call for an average pinion

diameter which is less than is used with straight spur gears for

similar duty. The teeth are generated by hobs, and the short

addendum combined with large pressure angle gives satisfactory

tooth shapes, without undercutting of teeth, for small pinions.

Pinions with very few teeth are cut on the well-known system

of enlarged addendum which is. also used for bevel pinions.

The teeth are cut to diametral pitch standards, measured cir-

cumferentially the same as in ordinary spur gearing.

Diametral Pitch of Herringbone Gears. Many designers

find it difficult to regard herringbone gears as spur gears. They

apply the same methods as are used for calculating ordinary

spiral gears, and complicate the problem to an unnecessary

extent. Spiral gears are usually employed for connecting shafts

which are not parallel to each other. Under these conditions

the circumferential pitch of gear and pinion may be quite differ-

ent, but the normal pitch of both must be the same.

In herringbone gears, if the spiral angle is made constant

there is a definite and fixed relationship between the normal and

the circumferential pitch. This is the case with Wuest herring-

bone gears. It is a great convenience to discard all reference

to the normal pitch and treat the gears just like spur gears on

the basis of the circumferential pitch. When this is once

done, it makes no difference whether the circular or diametral

pitch system is used. It is, of course, necessary for the gear

cutter to set his calipers to the normal tooth thickness, and if

circular cutters or inclined hobs are used they must be designed

for the normal pitch the same as in regular spiral gearing; but

the designer of machinery involving the use of these gears need

not be troubled with any such complications.

Wuest herringbone gears are cut by specially constructed hobs

which are used with the hob axis perpendicular to the gear axis.

The pitch of each hob, measured along the axis in the same way
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as the pitch of a screw is measured, is, therefore, the same as

the circumferential pitch of the gears which it cuts.

Pitch Diameters and Center Distances. The question in

regard to the use of enlarged pinions is not so easily understood

and requires a clear definition of what constitutes the
"
pitch

diameter" and the
"
pitch" of a gear.

If the center distance and velocity ratio are given, then the

true pitch diameters of the gear and pinion are fixed. Now
it is well known that involute gears will run satisfactorily when

set farther apart than the designed center distance. In other

words, the center distance may be varied to a limited extent.

This variation of the center distance does not effect either the

number of teeth or the velocity ratio, but it alters the pitch.

The foregoing arguments lead to the curious conclusion that the

pitch of a pair of involute gears has no definite value, but de-

pends on the center distance and velocity ratio. Conversely, if we
maintain a fixed centerdistance and ratio for a given pair of gears,we
can cut involute teeth in various ways without altering the pitch.

For instance, if we require a small pinion to mesh with a large

gear, we may generate the teeth to standard thickness on their

true pitch diameters or we may enlarge the blank diameter of

the pinion and reduce that of the gear by a corresponding amount.

The teeth will be generated from the same base circles in each

case, and the true pitch diameters and pitch will be the same,

but the shape of the teeth will be quite different in the two cases.

The pinion which is cut on standard lines will probably have

badly undercut teeth with consequent weakness and loss of

wearing surface. The enlarged pinion, on the contrary, will

have teeth with broad bases and unimpaired shape. Since

the center distance and velocity ratio have not been altered, the

true pitch circles and the pitch remain unchanged; but the

change in outside diameters has increased the addendum of

the pinion and decreased the addendum of the gear.

There is nothing new in this method, as it has been in use on

bevel and worm gears for many years; the most curious thing

about it is that it continues to be so little understood by the

majority of gear users.
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An enlarged pinion will mesh correctly with any gear in its

series, whether reduced or not, but if the gear is of standard

proportions the center distance will be greater than standard

by half the enlargement of the pinion. This applies to all

involute gears with generated teeth, no matter whether they

are hobbed, shaped or planed. When this method is applied

to herringbone gears, the enlargement or reduction of the blank

is left entirely out of consideration, and the machine is set to

cut the correct spiral angle on the true pitch circle. Given a

proper degree of accuracy in the cutting and reasonable care in

setting up, such gears are perfectly interchangeable, bear evenly

from end to end and do not jam. There is no question of

approximation. These methods have been in use for several

years, and there are thousands of gears cut in this manner giving

satisfactory service.

Dimensions. The dimensions proposed for an interchange-

able system for these gears are, therefore, as follows :

Tooth shape Involute

Pressure angle 20 degrees

Spiral angle 23 degrees

-P,.,
, ,. f ,, v Number of teeth

Pitch diameter (20 teeth and over) =

m ! j. f ,, N Number of teeth + 1 .6
Blank diameter (20 teeth and over) = -

x O.CK X No. of teeth + i
Pitch diameter (under 20 teeth) = !

-m i j- / j 41 \ o-95 X No. of teeth + 2.6
Blank diameter (under 20 teeth)

= -

For all herringbone gears, irrespective of number of teeth :

0.8
Addendum . . .

Dedendum . . .

Full depth . . .

Working depth

D.P.

i.o

D.P.

1.8

D.P.

1.6

D.P.
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Standard face width for gears with pinions of not less than

25 teeth, 6 times circular pitch; face widths for high ratio gears

with small pinions, 6 to 12 times circular pitch.

When a pinion of less than 20 teeth is used with a standard

gear, the center distance must be slightly increased to suit the

enlargement of the pinion. If it is desired to keep the center

distance to the standard dimensions, the gear diameter may be

reduced by the amount of the enlargement given to the pinion.

For example, if a pinion of 10 teeth, 5 diametral pitch is to mesh
with a gear of 90 teeth at lo-inch centers, then:

-nv u J* f -9S X 10 + I . .

Pitch diameter of pinion = - =2.1 inches.

Enlargement over standard pinion
= o.i inch.

Pitch diameter of standard gear = = 18.0 inches.

Reduced pitch diameter of gear = 18.0 o.i = 17.9 inches.

Center distance = ^^ = 10 inches.
2

Strength of Herringbone Gears. In these gears the teeth

need not have the same breaking strength as with spur gears

because they have not to combat the heavy and indeterminate

stresses which arise from inequalities of angular velocity. On
the other hand it is necessary to provide against rapid wear.

By using a finer pitch, each tooth has less individual wearing

surface, but this is more than compensated for by the larger

number of teeth in simultaneous contact than is the case with

gears of equal diameters but coarser pitch.

In high ratio gears, using pinions of exceptionally small

diameter, the pitch is finer than for ordinary ratios, but the face

width is extended to give the proper wearing surface.

The important factor in determining the proportions of the

teeth is the relationship between pitch line velocity and the per-

missible specific tooth pressure; in other words, the total tooth

pressure divided by the area of all the available simultaneous

contact along the teeth. Theoretically, this contact has no

area since it should consist of lines without breadth. Actually,
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an area exists, due to the elastic compression of the teeth in

contact, in a similar way in which an area of contact exists

between a car wheel and a rail. The area of contact is inde-

terminate, but the specific tooth pressure is proportional to the

driving stress on the teeth.

Horsepower Transmitted. In order to obtain a simple rule

for finding the proper dimensions, the results, of experience in

the matter of safe working loads under given conditions have

been reduced to a relationship between pitch line velocity and

the shearing stress on the pitch line thickness of an imaginary

straight tooth, assuming only one tooth in engagement at a

time. The shearing stress is a measure of the specific tooth

pressure, and the relationship referred to affords a convenient

means of arriving at reliable dimensions. The curves, Fig. 6,

give values 'of shearing stress K in pounds per square inch on

pitch line section of an imaginary single tooth for corresponding

pitch line velocities V in feet per minute. The values are en-

tirely empirical, but they are based on the results of extended

experience, and lead to dimensions which are safe and reliable.

Different curves are given for different materials, and it is neces-

sary to use that curve which corresponds to the lowest grade

material of the combination. A table is also provided in which

approximate values, taken from the diagram, are given. The

dimensions of gears can be derived from the curves in the follow-

ing manner. In the formulas:

H.P. = horsepower transmitted;

N = revolutions per minute;

D =
pitch diameter in inches;

p = circular pitch in inches;

F = total width of face in inches;

V =
pitch line velocity in feet per minute;

W = total tooth pressure at pitch line in pounds;
K = stress factor as obtained from table.

H.P. X 33,000 _ pFK
V 2.5
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In gears with moderate ratio (not exceeding i to 6), and face

width equivalent to 6 times the circular pitch, make:

or p = W

For higher ratios make F

up to a maximum of F = 10 p.

is found from:

2.4K

Rp (where R = ratio of gears)

The circular pitch for high ratios

When the face width is equivalent to 8 times the circular

pitch, W =
3.2 p

2
K, and when the face width is equivalent to

10 times the circular pitch, W = 4 p
2K.

Table of Safe Shearing Stresses K, in Pounds per Square Inch, for

Herringbone Gears



SPIRAL GEARING

Pinions are usually made from steel forgings of 0.40 to 0.50

per cent carbon. Soft pinions should never be used for her-

ringbone gears.

There are two special cases where the ordinary methods of

calculation should not be used. Rolling-mill gears are sub-

jected to stresses which are so far in excess of the average work-

ing load that it is necessary to consider carefully the strength

of the teeth in regard to possible overloads. Extra high ve-

locity gears, such as are used for steam turbines, require addi-

tional wearing surface and are characterized by extreme width

of face combined with abnormally fine pitch.

The following is a typical instance of the range of choice in

dimensions: A pump which requires 150 horsepower at 50 rev-

olutions per minute is to be driven from a motor at 500 revolu-

tions per minute; the shaft end is 4^ inches in diameter. If

the shaft is unsupported, it is not desirable to use a pinion of

less than 10 inches diameter. If the shaft is extended to a third

bearing a 7|-inch pinion can be used. If the pinion is cut solid

on its shaft and coupled to the motor, its diameter can be re-

duced to 5 inches. The three arrangements work out as fol-

lows:
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between the two. Gears for electric mine hoists and single-throw

pumps fall within this category. Machine tools, when driven

from variable-speed motors, are required to perform maximum

duty at minimum speed only for short periods at long intervals.

It is sufficient when designing gears for a drive of this kind to

reckon with the rated output of the motor at the mean between

its maximum and minimum speed.

General Points in Design. The usual conditions met with

in designing any form of gear drive are that power is to be trans-

mitted from a motor spindle or other prime mover running at

high speed to a machine which is required to operate at a con-

siderably reduced speed. In selecting a pair of herringbone

gears (as in the case of any other form of gearing) the designer

naturally selects the smallest size of pinion which can be con-

veniently adapted to the service for which it is desired. By so

doing, the size of the gear is reduced so that the least possible

amount of space is required. Another reason for selecting a

small pinion and corresponding gear to give the required speed

reduction is to reduce the pitch line velocity to a minimum, as

a higher velocity means increased wear and objectionable noise.

Both the pinion and gear have the same pitch line velocity, and,

consequently, the same tooth strength. In the design of her-

ringbone gears a pinion with 21 teeth will be found satisfactory

for average conditions, although it is possible to have a pinion

with a smaller number of teeth, pinions with as few as 13 teeth

having been used with satisfactory results. Where such small-

sized pinions are used, however, they are made solid on the

shaft.

Tables of Horsepower Transmitted. The accompanying

tables give the horsepower transmitted by herringbone gearing

for various pitches in cast iron and cast steel, with pitch line

velocities ranging from 400 to 2000 feet per minute. These

tables are used for determining the gear which is necessary for

transmitting a given power at a specified speed, and are based

on the formulas already given for calculating the horsepower

transmitted. It is customary to use a pinion of tougher material

than the gear, owing to the greater wear to which it is exposed,



SPIRAL GEARING

Horsepower Transmitted by Herringbone Gears

Velocity

at

Pitch

Circle,

Feet

per

Minute
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and the curves in Fig. 6 were used in calculating the tables,

for obtaining the relative toughness of the different metals

which are ordinarily used.

The tables give the horsepower transmitted by herringbone

gears in which the pinion has 21 teeth, and the width of face

corresponds to 8 and 10 times the circular pitch. To find the

horsepower for any other number of teeth, ascertain the pitch

line velocity, and under the given diametral pitch, find the horse-

power corresponding to this velocity. To find the horsepower
transmitted by a brass gear, multiply that found for a cast-iron

Horsepower Transmitted by Herringbone Gears

JL
oT ^

^Tj C
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to mesh with a 2i-tooth, 2^-diametral pitch pinion. The pitch

line velocity of a zy-tooth pinion would be 1150 (or, say 1200)

feet per minute, and in the i2oo-foot line, it is seen that a

gear running at this speed would transmit 91 horsepower.

This means that a wider face gear must be used, if a ly-tooth

pinion is to find successful application, the width of face required

being = n inches. The pinion in either case should
9i

be made of cast steel or preferably of forged steel, to compen-
sate for the greater wear to which it is exposed.

If it is required to find the horsepower transmitted by a 2-pitch

cast-steel gear, having a pitch diameter of 90 inches by zo-inch

face, running at 50 revolutions per minute, we find that the

pitch line velocity is 1180 feet per minute. Opposite 1200 in

the table, under 2 diametral pitch and i2|-inch face, we find

285 horsepower, while the capacity of a gear of lo-inch face

would be = 228 horsepower. Although the tables are

calculated for 21-tooth pinions, they are universal in their

application, it being merely necessary to find the corresponding

pitch line velocity for any number of teeth.

Summary of Salient Features. Before describing some

special applications of herringbone gears to the needs of various

industries and machines, it may be well to summarize their

salient features. The smooth and continuous action is virtu-

ally independent of the diameter or number of teeth in the

pinion. Extremely high ratios of reduction can be used with-

out fear of uneven driving or undue wear and without need for

unwieldy gear diameters which would be disproportionate to the

general design. High ratio gears of this type transmit power
with practically no more loss than low ratio gears. They are

far more efficient than belts, ropes, worm-gears or compound
trains of spur gearing, while their adoption results in a whole-

sale reduction of countershafts and bearings, which reduces the

power consumption and running costs to a remarkable degree.

There are many instances where spur gears cannot be used

because the vibration which they set up has a detrimental effect
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on the driven machine or its product. The inconvenience of a

cumbersome system of belts or ropes has usually to be endured

in such cases, but it is not too much to say that the requirements
of almost all of these conditions are fully satisfied by this type
of herringbone gears.

The application of spur gears has been much restricted by
the noise which they make when run at high velocities. The

use of rawhide or other soft materials has proved successful

for comparatively light work, but is not adapted to low speeds

and heavy service. It should be noted that the use of soft

pinions, while mitigating the nuisance of excessive noise, does

not reduce vibration or unevenness of motion. There is a limit

to the pitch line velocities at which spur gears can be operated

beyond which it is unsafe to use them. This limit is far below

the minimum velocities which can be used in connection with

steam turbines of economical design and high power. Accurate

herringbone gears operate quite smoothly at velocities which

are impossible for other types. This feature would appear to

reserve for them a field of application which has great possi-

bilities and is likely to cause some great changes in the standard

practice of today.

Application to Steam Turbines. Direct-connected steam tur-

bines for marine propulsion have been only partially successful

in a very limited field. It is only when the power required is

very great and the speed of the vessel unusually high that the

direct-connected turbine can be applied, and even then the ap-

plication does not do full justice to either turbine or propeller,

while the first cost is much higher than it need be. The use of

direct-coupled turbines is confined to fast ocean liners and war-

ships. Ordinary vessels of commerce cannot be adapted to tur-

bine power in this form. Mr. Parsons, of steam turbine fame,

attacked the problem of applying the turbine to an ordinary

freight steamer of moderate power. To this end he purchased

the S. S. Vespasian, a modern tramp, with triple-expansion

engines of about 1000 H.P. and a speed of u knots, with pro-

peller running at 75 R.P.M. As a preliminary to the installation

of geared turbines on this vessel, the original engines were over-
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hauled, and a series of coal consumption trials made under

regular sea-going conditions.

The engines were then removed and for them were substituted

a pair of steam turbines connected to the propeller by herring-

bone gears. Each turbine develops about 500 H.P. at 1500
R.P.M. The propeller runs at the original speed of 75 R.P.M.

Each turbine is coupled to a herringbone pinion with teeth cut

solid on a shaft of soft-grade chrome-nickel steel. The two

pinions mesh with rolled-steel gear rings mounted on a cast-iron

spider which is keyed to the propeller shaft. The whole gear

system is enclosed in a case, and the teeth are kept lubricated

by oil jets. The great width of the pinions in proportion to their

diameter made it necessary to provide room for bearings be-

tween the right- and left-hand teeth. The proportions of this,

remarkable gear unit are as follows: Pinions, 20 teeth; gear,

398 teeth, 4 diametral pitch; teeth of involute form, 2o-degree

pressure angle, 23-degree spiral angle; over-all face width, 34

inches, including 10 inches space for bearing; actual face width,

24 inches; ratio of reduction, 19.9 to i.

When this gear had been running in regular voyages for more

than a year and had covered over 20,000 miles, the results that

had been obtained proved to have been interesting and satis-

factory. The efficiency of the gear was fully 98 per cent, in-

cluding the losses in the bearings on the gear case. The geared
turbine showed a sustained all-around saving in fuel consumption
of more than 25 per cent over the original engines. The wear

on the teeth was negligible after 20,000 miles, being only 0.002

inch at the pitch lines of the pinions.

Herringbone Gears for Machine Tools. The field for accu-

rate herringbone gears in connection with machine tool driving

is very extensive. For individual motor drives this gear gives

a positive transmission which is free from vibration and less

noisy than so-called silent chains or rawhide pinions, while there

is no trouble from slipping belts or slack chains; but the real

advantage of these gears lies in the better finish that can be

obtained when they are used for the entire main transmission,

and in the higher output combined with reduced maintenance
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which they give to heavy machine tools. Chatter is eliminated.

Even wheels of grinding machines have been successfully driven

through herringbone gears. Reversing gears for heavy planers

are a revelation to those familiar only with the ordinary spur

drive.

Geared Hydraulic Turbines. The speed of hydraulic tur-

bines is controlled by the available head of water supplied to

them. The greater number of turbines are required to operate

under low heads and must run at slow speed. Hydroelectric

power has usually to be transmitted to a considerable distance

and is produced in the form of alternating current of definite

periodicity. The speed of the turbines may be as low as 50 rev-

olutions per minute or even less. A large direct-coupled alter-

nator for this speed is an expensive proposition.

Herringbone gears can be used to speed up from the slow-

running turbines to generators of normal design, speed and

efficiency. The smooth action of these gears is unimpaired

when the wheel drives the pinion, and high ratios of speed in-

crease can be obtained from them without noise and with less

loss than direct-coupled units will give.

Rolling Mills and Rod Mills. There are two advantages in

the use of accurate herringbone gears for this class of work.

The absence of shock in transmission renders breakages much

less frequent than with cut spur or molded helical gears. The

even transmission and entire elimination of vibration allows

the finishing rolls to be gear-driven for the finest work without

showing gear marks on the finished product. Herringbone-

geared mills run with very little noise. This may be of less

consequence in rolling mills than in most other applications, but

it is an improvement. Rod mills, with their quantities of high-

speed gearing, can be very advantageously equipped with her-

ringbone gears and pinions. 4



CHAPTER IV

METHODS FOR FORMING THE TEETH OF SPIRAL AND
HERRINGBONE GEARS AND WORMS.

SPIRAL, herringbone and worm gearing are all radically differ-

ent in their action. The first two forms, however, and the

worm member of the third, are identical so far as the principles

governing the forming of their teeth are concerned, and they

may, therefore, be considered together in this chapter.

Principal Methods Used. Almost as great a variety of

methods of cutting teeth are possible for helical as for spur gears.

Commercially, however, the two important principles are the

formed tool and the molding-generating methods. The templet,

odontographic and describing-generating methods of cutting

gear teeth (in each of which the outline is worked out by the point

of a tool, suitably constrained) are most useful for cutting gears

of large size, in which tools acting on the formed tool or mold-

ing-generating principle would be subject to too heavy cuts.

Since helical gearing is generally confined to small and medium-

sized work, these processes are unnecessary, being by nature

rather slow in action, and dependent for their accuracy :

on the

preservation of the shape of easily injured points of compara-

tively small cutting tools. As in the case of spur gears, the

molding-generating method is of comparatively recent intro-

duction, and is confined almost wholly to the production of

teeth of involute form.

Machines Using Formed Tools in a Shaping or Planing Oper-
ation. With the twisted teeth in gears of the class under dis-

cussion, it is evidently necessary, in employing shaping or

planing operations, to give a rotary movement to the blank

being operated on, at the same time as, and in the proper ratio

with, the cutting stroke of the tool. This is necessary to com-

pel the tool to follow the helix on which the teeth of the gear or

the worm are to be formed. Attachments have, for example,
98
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been made for the shaper, giving the work the proper motion for

cutting helical teeth.

In one of these attachments the work is mounted between

centers on a supplementary bed, fastened to the work table of

the shaper. The faceplate by which the work is driven from

the headstock spindle is connected to that spindle by an indexing

mechanism, consisting of a notched plate, with a locking bolt for

holding the work in the different positions for the different num-

bers of teeth required. The headstock spindle is connected,

by spiral gearing and a set of change gears, with a pinion oper-

ated by a rack, which rack is fastened to the shaper ram. It

will be seen that this connection with the shaper ram will give

a rocking movement to the headstock spindle and the work, in

unison with the stroke of the tool. By selecting suitable change

gears, this rocking movement may be made of any desired

amplitude for a given length of stroke, so that any lead of helix

or spiral desired may be obtained. Provision is made, in the

mechanism by which the rack is attached to the ram, for raising

or lowering the work table to the position required for different

diameters of work. The tool is, of course, fed downward by

hand, and the indexing is done by hand also.

In another shaper attachment a spur gear keyed to the head-

stock spindle meshes with a vertical rack, sliding in a guide

which is cast integrally with the headstock. This vertical rack

is pivoted to a block which slides in a guide attached to a swiveling

head, so that the guide may be adjusted to any angle. This

swiveling head, in turn, is attached to a bar, which is fastened

to the ram, and is guided on ways supported by a framework

at the back of the headstock. It will thus be seen that the

forward and backward movement of the ram will impart an up-

and-down movement to the rack, which will, in turn, give a

rocking movement to the spindle of the headstock, and the work

which it drives. The amplitude of this rocking can be increased

or diminished by setting the swiveling guide at a greater or less

angle, so that the helices of various leads can be obtained.

This makes the use of change gears unnecessary. The indexing

device is similar in principle in the two arrangements.
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It will seem strange at first thought, perhaps, to describe

the cutting of worms in a lathe as an example of the use of

formed tools in shaping or planing operations, but the operation

is essentially the same as that involved in shaping spiral gear

teeth by means of the attachments described. In Fig. i imagine

that the lead-screw shown is of such steep pitch that it can be

rotated by pushing the carriage backward and forward. Under

these circumstances, if provision is made for reciprocating the

carriage (corresponding to the ram for the shaper), the lead-

screw will be rotated in unison with it, and this movement will

be transmitted through change gears A, B, C and D to the head-

6-TOOTH GEAR OR WORM BEING CUT

GEARS A, B, C AND D ARE CHOSEN
TO GIVE THE LEAD DESIRED FOR THE
SPIRAL GEAR OR WORM

DETAIL OF FACE-

PLATE, SLOTTED
FOR INDEXING A
8-TOOTH SPIRAL
GEAR OR WORM

Machinery

Fig. i. The Lathe Method of Planing Helical Teeth in Gears or Worms

stock spindle, giving a rocking movement to the work. The

only difference in the two cases is that in the lathe a screw of

very steep pitch would be used to change the reciprocating

motion of the tool to the rocking motion required by the work,

while in the case of the shaper the more natural rack and pinion

movement is employed.
In the case of the lathe, of course, the power is not applied

to the carriage but to the spindle. For that reason it is best

adapted for cutting spiral gears of comparatively small lead, or

"worms" as they are ordinarily called. If it were attempted to

cut 45-degree spirals, for instance, the lead-screw would have to

be speeded up so fast, as compared with the movement of the

spindle, that the driving belt would be unable to operate the

machine. Special lathes have been built for cutting steep

worm threads, in which the power has been applied to the lead-
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screw, the spindle being driven from it through the change gears.

A lathe so arranged would have as much difficulty in cutting

fine pitches as the ordinary lathe does in cutting coarse ones.

Different methods of indexing may be used for the lathe. It

will be noticed that in Fig. i the faceplate used has the same

number of slots as the required number of teeth. After one

tooth space has been cut, the work can be removed, and re-

placed again between the centers with the tail of the dog in

another slot. After this space has been completed, the next

one is cut, and so on until the whole six are finished. Other

methods are in use, such as slipping of change gears A and B
past each other a certain number of teeth, as determined by
calculation.

Special lathes are built for threading, some of which are auto-

matic in their action. One of these is built by the Automatic

Machine Co., Bridgeport, Conn. The size especially adapted to

cutting worms is provided with mechanism for duplicating the

action of a manually-operated lathe engaged in threading. After

a piece of work has been placed between the centers and the

machine has been started, the work revolves, and the carriage

feeds forward until the proper length thread has been cut; then

the tool is withdrawn, and the carriage returns to begin again

on a new cut and so on without attention from the operator.

The tool is fed in a certain suitable amount, at the beginning

of each cut, the amount of this feed being automatically dimin-

ished to give a fine finish for the final cuts. When the depth for

which the tool has been set is reached, the operation of the

mechanism is automatically arrested. In cutting multiple-

threaded worms in this machine, multiple tools may be used,

thus avoiding the necessity for indexing the work. As many
as eight cutting tools have been used at once on this machine,

giving a total length of cutting edge of 8 inches.

Machines Using Formed Milling Cutters. The formed tool

or cutter method of shaping the teeth of gears is generally con-

sidered as being one in which the tool accurately reproduces its

shape in the tooth space it forms. This is true in cutting straight-

tooth spur gears, and in planing the teeth of spiral gears by the
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process just described. It is not exactly true, however, of any

possible process of milling spiral teeth. This is best seen in

Fig. 2. In the three cases here shown we have first, a planer

tool; second, a disk milling cutter; and third, an end milling

cutter all formed to the same identical outline, and cutting

helical grooves of the same lead and depth in blanks of the same

diameter. The section in each case is a plane one, taken normal

to the helix at the pitch line. Of course, the true section to take

would be that of the helicoid normal to the helicoid of the groove

being cut. The plane in which we have taken the section, how-

ALL SECTIONS TAKEN ON LINE X-X

7
/ \ FORM

Fig. 2. Comparison of the Accuracy of Form Reproduction obtainable

by Formed Planing Tool, Formed Disk Cutter and Formed End-mill

ever, so nearly approximates this helicoid that the error is negli-

gible.

The planer tool necessarily cuts a groove of the same shape
as its outline, the plane of its outline being the same as the plane
of the section shown. The disk milling cutter, however, inter-

feres with the sides of the groove it cuts. This interference takes

place on one side as the teeth are entering, and on the other as

the teeth are leaving. This results in a generating action,

which takes place in addition to the simple forming action, so

that the tooth cut is not an exact duplicate of the outline of the

cutter. In the case of the formed end-mill there is also an inter-
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ference of the same kind as with the formed disk cutter, but it

is so slight as to be absolutely undetectable, in all ordinary cases.

Its presence is only known from theoretical considerations.

In spite of its imperfect reproduction of the desired form, the

disk cutter is the type generally used for milling, since it may
be so relieved as to retain its shape even after repeated grinding.

The end-mill type of formed cutter cannot remove so much
stock in a given time, and it is difficult to make it so that it can

be ground without changing its form. The only way in which

this grinding can be practically performed is by the use of some

form of templet grinding machine. The formed end-mill is

nevertheless used to a limited extent.

The simplest way of using the milling process for cutting hel-

ical gears or worms makes use of the universal milling machine.

With this machine the work and the feed-screw of the table

on which it is mounted are so connected by means of gearing

that the forward feeding gives a rotary movement to the work,

producing a helix of the required lead. The mechanism is iden-

tical in principle with that shown in Fig. i for the lathe, the only

difference being that in the milling process the longitudinal

movement is a steady feeding motion, made once for each tooth

space, instead of being a continuously reciprocating motion.

The simple indexing device shown in Fig. i is replaced by the

more elaborate index plate and worm-wheel device of the spiral

head.

This mechanism is exemplified in the Brown & Sharpe univer-

sal milling machine with its spiral head. The work has to be

swung at an angle with the cutter to agree with the helix angle

at the pitch line. This is done by swiveling the table of the

universal milling machine to bring the work to the proper angle

with the cutter. In most makes of machines it is inconvenient,

if not impossible, to swivel the table to a greater angle than

45 degrees. For greater angles special attachments are pro-

vided for swiveling the cutter, leaving the table in its normal

position at right angles to the spindle of the machine. These

various attachments allow the milling machine to work through-

out a wide range of angles for helical gears and worms, the only
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limitation being one similar to that imposed on worm cutting

in the lathe, though the limitation is reversed. For worms or

gears of too small lead as compared with their diameter, the

rotary movement of the blank is so great that the comparatively

slow-moving feed-screw is unable to speed up the spiral head

mechanism to get the required movement, and still furnish power

enough for feeding the work against the cutter.

Points Relating to the Milling of Spiral Gears. Before

describing other methods for cutting the teeth in spiral or helical

gears, we shall briefly cover the essential points to be considered

in milling these gears in a universal milling machine. The first

point to be considered is the pitch of cutter to be used. The
thickness of the cutter at the pitch line for milling spiral gears

should equal one-half the normal cir-

cular pitch n (see Fig. 3). If a cutter

were used having a thickness, at the

pitch line, equal to one-half the cir-

cular pitch P, as for spur gearing, the

spaces between the teeth would be

cut too wide, thus producing thin

teeth. The normal pitch varies with

the angle a of the spiral; hence, the

spiral angle must be considered when

Fig. 3. Relation between Normal selecting a Cutter. The CUtter should
and Regular Circular Pitch .

be of the same pitch as the normal

diametral pitch of the gear and this normal pitch is found by

dividing the "real" diametral pitch by the cosine of the spiral

angle. To illustrate, if the pitch diameter of a spiral gear is 6.718

and there are 38 teeth having a spiral angle of 45 degrees, the

"real" diametral pitch equals 38 -f- 6.718
=

5.656; then, the nor-

mal diametral pitch equals 5.656 divided by the cosine of 45 de-

grees or 5.656 -5- 0.707
= 8. A cutter, then, of 8 diametral pitch

is the one to use for this particular gear. This same result could

also be obtained as follows: If the circular pitch P is 0.5554, the

normal circular pitch n can be found by multiplying the circular

pitch P by the cosine of the spiral angle. For example, 0.5554 X
0.707

=
0.3927. The normal diametral pitch is then found by
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dividing 3.1416 by the normal circular pitch. Thus 3 ' 141 = 8,
0.3927

which is the diametral pitch of the cutter.

According to the Brown & Sharpe system of cutters for spur

gears having involute teeth, eight different shapes of cutters

(marked by numbers) are used for various numbers of teeth in

gears of any one pitch. When the diametral -pitch is known,

ANGLE OF TEETH WITH AXIS OF GEAR
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

30

<35
s:w 40

45

P*

FORMULA:
T- N

cos 9 oc

T= number of teeth

for which to select
cutter.

N=number of teeth in

spiral gear.

--angle of teeth with

axis of gear.

Fig. 4. Diagram for finding Cutter for Milling Spiral Gears

the number of cutter for that particular pitch must, therefore,

be determined as explained in Chapters I and II. A diagram
and table, useful in this connection, are given in the following.

Diagram for Finding Cutter for Milling Spiral Gears. A
diagram, Fig. 4, has been prepared, giving directly the number of

cutter to be used for a given number of teeth and a given spiral

angle. The heavy lines drawn in the diagram are division lines

between the fields to which each cutter applies. For example,
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suppose the angle of the teeth of a gear is 37 degrees with its

axis, and the number of teeth is 48. The point A, at which the

horizontal line representing the number of teeth and the vertical

line representing the angle intersect, falls within the area marked

cutter No. 2
; therefore, a No. 2 cutter is required for cutting a

48-tooth spiral gear having a spiral angle of 37 degrees.

Table for Selecting Cutter for Milling Spiral Gears. The
" Table for Selecting Cutter for Milling Spiral Gears" gives the

value of the factor K = which enters in the formula for
cos3 a

finding the number of teeth for which to select the cutter for

miUing spiral gears. The table is used as follows: Multiply the

actual number of teeth in the spiral gear to be cut by the factor

K, as given in the table opposite the angle of spiral. The product

gives the number of teeth for which to select the cutter.

Example. Angle of spiral
= 30 degrees; number of teeth in

spiral gear = 18.

Factor K for 30 degrees, as found from the table, equals 1.540.

Then, number of teeth for which to select the cutter = 18 X
1.540

=
28, approximately. Hence, use spur gear cutter for

28 teeth, or cutter No. 4.

Angular Position of Table when Milling Spiral Gears. In

cutting a spiral gear in a milling machine as ordinarily arranged,

it is necessary to set the table to the helix angle in order that

the sides of the cutter may not interfere, or drag in the cut; but

the helix angle varies with the depth, being greatest at the top
of the tooth, less at the pitch line and still less at the bottom

of the cut. In fact, if the cut were deep enough to reach all the

way to the center of the piece being operated on, the helix angle

would become zero, or parallel to the center line. If mechanics

in general were asked what would be the proper angle at which

to set the table, they would, in most cases, say that the helix

angle at the pitch line would be the one to determine the setting.

This setting has the effect of making the width of the cut ex-

actly right at the pitch line, but it does so at the expense of

undercutting and weakening the teeth.

It has, therefore, been frequently stated that the most suit-
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Table for Selecting Cutter for Milling Spiral Gears

Angle of
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able angle (and the one most likely to produce the best results)

at which to set the table of the milling machine when milling

spiral gears is that corresponding either to the diameter of the

gear measured at the bottom of the space, or to the diameter

measured at the working depth. The reason invariably ad-

duced for this is, as just mentioned, that, if the angle chosen is

the angle of the spiral measured on the pitch cylinder of the

gear, an undue amount of undercutting, and therefore weaken-

ing, of the teeth will occur, owing to an excessive amount of

interference with the sides of the teeth on the part of the cutter;

: ANGLE OF TABLE Machinery

Fig. 5. Shapes of Teeth Obtained by Setting the Table at Different

Angles, the Cutter and the Lead remaining the Same

and that, therefore, a somewhat smaller angle should be selected

to reduce these effects.

To determine whether there was, practically, anything in this

idea or not, some experiments were recently made on a spiral

gear, the immediate object of the experiments being to find out

what the effect of altering the angle of setting of the milling

machine table was upon the shape of the tooth cut.

The experiments were made upon a cast-iron gear, with a

pitch diameter of 4.242 inches, and designed for 24 teeth, the

diametral pitch (corresponding to the normal circular pitch)

being 8. The correct cutter to use was determined by the form-

TV
ula Ne

=
,
this cutter being No. 3 in each of the cases dealt
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with. The experiments consisted of cutting six teeth in the

gear blank, all being of the same depth, the angle of setting of

the table of the milling machine being different in each of the

six cases. The spiral angle measured on the pitch cylinder was

45 degrees, the lead of the spiral being 13.32 inches, for which

the gears of the spiral dividing-head were arranged. The six

spirals chosen were at angles of 45, 44, 43, 42, 41 and 40 degrees,

each tooth being formed by two cuts at one angle, the lead of

the spiral remaining the same throughout the series of tests.

It should be here noted that 43 degrees is the angle which corre-

sponds to the diameter measured at the bottom of the space.

The profiles of the teeth taken as sections normal to the spiral

on the pitch surface are indicated in Fig. 5, the profiles being

Table of Observed Tooth Dimensions
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in width below the widest part of the tooth of about o.oio

inch.

The deductions drawn from the results of these tests are:

1. That the practice of setting the table at an angle less than

the spiral or helix angle measured on the pitch surface is justified;

although this angle should not be less than the spiral or helix

angle measured at the bottom of the tooth.

2. That a cutter for a larger number of teeth than that given

N
by the formula Ne

= could probably be employed, in
cos3 a

order to counteract the flattening and widening effect of the cutter

with an angle as indicated above.

In spite of the good reasons given for setting the table to the

angle determined by the root of the teeth, it is common practice

to set the table to the spiral angle of the teeth at the pitch line.

In any case, the angle is determined by first obtaining the tan-

gent of the angle, and then finding the corresponding angle from

a table of tangents. For example, if the pitch diameter of the

gear is 4.46 and the lead\)f the spiral, 20 inches, the tangent

equals
&-J. =

0.700, which is the tangent of 35 degrees;
20

therefore the table should be swiveled 35 degrees from its position

at right angles to the spindle.

Milling the Spiral Teeth. After a tooth space has been

milled, the cutter should be prevented from dragging through it

when being returned for another cut. This can be done by

lowering the blank slightly, or by stopping the machine and turn-

ing the cutter to such a position that the teeth will not touch

the work. If the gear has teeth coarser than 10 or 12 diametral

pitch, it is well to take a roughing and a finishing cut. When

pressing a spiral gear blank on the arbor, it should be remembered

that it is more likely to slip when being milled than a spur gear,

because the pressure of the cut, being at an angle, tends to rotate

the blank on the arbor.

Specialized Forms of Milling Machines for Cutting Spirals by
the Formed Cutter Method. The principle of the universal

milling machine for cutting spiral gears and worms has been ap-
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plied to the design of various special machines for the same

purpose. The specialization of these machines includes making
the spiral and indexing mechanisms integral parts of the tool, so

that they have a much greater capacity for taking heavy cuts

than is the case where they are merely attachments.

In Fig. 6 is shown a diagram of the index worm connections

of a universal gear cutting machine made by J. E. Reinecker, of

Chemnitz-Gablenz, Germany, as arranged for cutting helical gears

by the formed milling process. The machine is arranged on the

general lines of a milling machine, except that the work spindle

is at the top of the column, and the cutter spindle on the knee.

The cutter is driven by an internal gear of large diameter and

is mounted on a swivel table which can be set to the required helix

angle. The form of cutter slide will provide for any angle up
to 30 degrees. For greater angles it is replaced with a slide which

can be rotated to any angle throughout the whole circle.

The screw which feeds the cutter slide along the knee is driven

from cone pulley D, through a vertical shaft and gear connec-

tions. Cone pulley D is also connected with change gearing F,

which is, in turn, connected with the index worm, so as to rotate

index wheel G and the work, for any desired helix. The prin-

ciple of this is the same as in the universal milling machine,

change gears F acting the same as the change gears used to con-

nect the spiral head with the table feed-screw. Now the worm-

wheel G is used for indexing, as well as for rotating the work for

the helix, in unison with the feeding of the cutter slide. The

way in which these two motions are imparted to G without inter-

fering with each other, may be understood from the following

description.

At H are mounted the change gears by which the indexing is

accomplished. These gears drive bevel gear /. Index worm K,

meshing with index worm-wheel G, is mounted on a hoflow

sleeve, keyed fast to the bevel gear L. Shaft M carries a hub

with projecting pivots on its right-hand end, on which are

mounted bevel pinions N. Shaft M is driven by worm-wheel 0,

connected with the feed of the slide cutter through change gears

F. Gears /, L and N form a differential mechanism of the well-
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known "
jack-in-the-box" type. The action of this mechanism

is such that if shaft M be at rest, change gears at H may be

operated for the indexing, transmitting the motion from gears /
to L through pinions N as idlers, thus revolving index worm K.

On the other hand, with the indexing mechanism still and the

cutter slide feeding, the movement thus imparted to shaft M
may be transmitted (by the rolling of pinions,^ on stationary

bevel gear /, and the consequent rotation of bevel gear Z), to

worm Kj and thence to worm-wheel G and the work. It will

thus be seen that the indexing, and the rotation for the helical

cutting, can take place independently of each other. But more

than this, the two motions can be operated together without

interference. In fact, either of the motions imparted to shaft M
or gears atH may be stopped or reversed independently, and each

will have its proper influence on the index wheel and the work.

With this understanding of the differential mechanism, the

operation of the machine is easily comprehended. Change gears

H are connected through a one-revolution friction trip with the

main driving shaft. The cutter, set at the proper angle, is fed

forward through the work, which is rotated by change gears F,

shaft M and worm K, at the proper rate to cut the proper helix.

The cutter is then dropped down to clear the work (provision for

this being made in the machine) ,
and returned, ready to begin on

a new tooth. The indexing mechanism is then tripped by hand,

and the work is rotated into position for the new tooth by change

gears at H, gear / and worm-wheel K. This is repeated until

the gear is done.

In the machine described power is applied to the feed-screw,

from which the work is rotated through change gearing. This

arrangement is best for helices of great lead. When it comes to

milling helical gears with small leads, or worms, it is necessary

to use the lathe principle and apply the power to rotating the

work, the longitudinal feed being driven from the work spindle

through change gearing.

Specialized Form Milling Machines for Herringbone Gears.

A machine for helical gear cutting, but provided with some

special features, is used by C. E. Wuest & Co., Seebach, Zurich,
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Switzerland, for cutting herringbone gears of a special form, in

which it is unnecessary to cut the two halves separately, in separ-

ate sections, as is the usual case. (See preceding chapter.) The

cuts are staggered so that the teeth on one side run into the

spaces on the other, in such a way as to permit cutting them with

rotary cutters without having one side interfere with the other.

The machine for doing this is built on a very simple plan. It

consists of a vertical spindle carrying the work, which is indexed

by power. The indexing wheel is connected by the usual change

gearing with the two vertical slides on which the cutters are

mounted on either side. These cutters work simultaneously,

one feeding downward to cut the upper half, while the other is

feeding upward to cut the lower half.

There is another specialized form of herringbone gear made

by Andre Citroen & Co., Paris, France. The teeth of these

gears are shaped by an end milling cutter, guided by suitable

mechanism to produce the continuous "wavy" form of herring-

bone teeth characteristic of these gears (see Fig. i, Chapter III).

This process also has the advantage of not requiring the blank

to be made in two pieces. The same principle has been applied

by the builders to the cutting of herringbone bevel gears.

Other manufacturers make use of the formed end-mill to a

limited extent. The arrangement devised by Gould & Eberhardt

for milling large helical gears in the lathe used this form of

cutter, and the worms or spiral gears which drive the racks of

the Sellers drive planers, made by at least one of our prominent

planer builders, are cut by end-mills in a specialized milling

machine of simple design, made especially for this purpose.

Automatic Machines for Milling with Formed Cutters. A
number of full automatic machines have been built in an exper-

imental way for milling spiral gears with formed cutters. They
have usually been modelled after the automatic spur gear cutter.

Evidently the mechanism has to be considerably more com-

plicated. The first complication involved is due to the fact that

the index wheel must be under the influence of both the helical

and the indexing movements, as in the Reinecker machine in

Fig. 6. The differential gearing there shown is the arrangement
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generally used to effect the combination of these movements in

the automatic helical gear cutter.

Another complication is introduced by the necessity for re-

lieving the cutter on its return stroke, after finishing the forward

feed through the blank. Backlash in the rotating mechanism

between the cutter slide and the work so alters the position of

the cutter and the work, on the return stroke, -that the latter

will drag on the one side of the groove it has just cut, unless it

HELICAL PATH OF\ f ,

CUTTING TOOTH / V

Machinery

Fig. 7. The Molding-generating Principle arranged to Employ a Cutter

having a Helical Shaping Action Cutting Teeth in a Solid Blank

is separated slightly from it. This has been done in various

ways in the various machines built; in some cases by mounting
the cutter on a supplementary holder which rocks back out of

the way on the return stroke, and in other cases by withdraw-

ing the work by mechanism provided for the purpose.

These various complications seem to have militated against

the commercial success of the automatic spiral gear cutting

machine to such an extent that, so far as the author knows, but

one of the various designs built has ever left the shop where it

was made.
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Molding-generating Principle : Planing Operations. Pass-

ing by the templet, odontographic and describing-generating

principles, for the reasons mentioned in the introduction to this

chapter, we come to the molding-generating principle. This is

applied to helical gears in the same way as to spur gears, with

such modifications as are necessary to allow for the helical shape

of the teeth. In Fig. 7 the forming cutter and the blank to be

cut are rolled together, while the forming cutter is reciprocated

ALTERNATIVE
FORMING RACK

Machinery

Fig. 8. A Rack with Teeth set on an
Angle Operating by Impression on
the Molding-generating Principle
to Form Teeth in a Helical Gear

Fig. 9. Shaper Tools Representing
Teeth of an Imaginary Rack Oper-
ating on the Molding-generating
Principle in a Helical Gear

axially. In combination with the axial movement, however, the

cutter has to be given a rocking movement about its center line, so

that its teeth will follow the path of the dotted lines shown, which

indicate the helix of the spiral gear which the cutter represents.

In Fig. 8 the forming rack has teeth set on the same angle as

the helix angle desired in the gear being formed. The rolling

of a plastic blank over this forming rack will form in the blank

helical teeth of the shape desired. A top view of the rack is
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shown, which will make this clearer. Instead of the forming
rack shown by the full lines, one like that shown in the dotted

lines may be used, whose teeth coincide with those of the first,

but which moves in a direction at right angles to the direction of

its teeth. If this dotted rack is moved at such a rate of speed

that its teeth always coincide with those of the rack shown in

full lines, they will evidently both form teeth of exactly the

same shape in the blank.

In Fig. 9 we have the dotted rack of the top view of Fig. 8,

shown engaged in the operation of generating the teeth of a gear

identical with that in Fig. 8. This view has been taken at an

angle so as to show the normal view of the rack. If the proper
relative rates of rotation of the work and movement of the rack

are maintained in Figs. 8 and 9, and the normal sections of the

racks in each case are the same, the gears generated will be the

same. It is evident in Fig. 9 that the teeth of the rack may be

replaced by shaper or planer tools 7\ and T2 ,
which may be used

in forming teeth on the blank by rotating the gear and moving
the tools endwise, in the proper ratio prescribed by the condi-

tions in Fig. 8.

Fig. 9 is interesting in that it hints at the principle on which

the action of the helical gearing is based. As drawn, it shows

very plainly the action of the well-known Sellers drive for planers.

It will be noted that for a short space the rack teeth exactly fill

the outline of the gear tooth. Contact between the gear and the

rack takes place on straight lines running diagonally across the

plane faces of the rack teeth.

/ Practical application has been made of the principle shown in

Fig. 9. The Bilgram spiral gear planing machine involves this

principle. The work is mounted on a spindle carried in a head,

which swivels about a vertical axis so that it may be set to the

helix angle of the gear being cut. The cutting tool, having a

shape to represent a tooth of the imaginary generating rack, is

carried by a ram which works in and out, cutting on the return

stroke. This ram is carried by a head which is fed along the bed

of the machine. This longitudinal feeding of the ram-carrying

head is connected with the rotary movement of the work spindle
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by change gearing, in the proper ratio for the case in hand, so

that the gear will roll with the movement of the head just as

it would if it were acting under the influence of the imaginary

rack, one of whose teeth is represented by the cutting tool. The
conditions are thus exactly the same as in Fig. 9.

Under these conditions, if the machine is set properly, the cut-

ting tool will start to work at one side of the blank, and pass

through it, feeding at the end of each successive stroke, with

the work rolling in such a way as to form a tooth space of the

proper shape. This action is modified somewhat by the method
of indexing adopted. The arrangement used indexes the work
at every stroke, so that when the tool has once passed through
the work, the gear is entirely completed, every tooth having
been worked on. This indexing movement and the rolling

motion required for the generating are superimposed on each

other by suitable mechanism so that neither interferes with the

other.

It may be mentioned incidentally that this machine is the

only one known to the author in which all the requirements for

theoretical accuracy in cutting helical gears have been taken

care of. There is a minute, although actual, error involved in

even the otherwise perfect hobbing process for cutting these gears.

The Hobbing Modification of the Molding-generating Princi-

ple. Instead of using the shaper or planer tool to take the place

of the teeth of the imaginary rack shown in Fig. 9, a hob may
be used in the same way as for hobbing spur gears. This con-

dition is shown in Fig. 10, which should be compared with

Fig. 9. The upper or plan view best shows the respective angu-
lar settings of the work and the hob. The hob is set at an angle

with the line of movement of the imaginary rack equal to its

own helix angle, as for spur gears. The gear being cut is set at

an angle with this same line equal to its own helix angle, so that

in this case (in which both gear and hob are right-hand) they

are set at an angle to each other equal to the difference between

the helix angles. If the hob represented by the worm in the

diagram is revolved in the direction shown, its teeth will have

the same outline and the same movement as the teeth of an



METHODS OF CUTTING TEETH

imaginary rack, moving in the direction shown. If the work be

revolved in the proper ratio with the hob, the latter will form

the teeth in the former in the same way that the imaginary rack

would, provided it is fed progressively through the work in the

direction of line XX.
This necessity for feeding the hob through the work introduces

an added complexity to the machine in the case -of spiral gears,

beyond that needed for the spur gear hobbing machine. To
understand this, suppose that in Fig. 10 the spindle mechanism

GEAR BEING CUT

WORM REPRESENTING THE HOB
WHICH IS CUTTING THE GEAR

GEAR BEING CUT

lOF IMAGINARY RACK V
I HELIX ANGLE Of H

\ \DIRECTION OF FEEDING
X MOVEMENT OF HOB

MAGINARY RACK WHICH FORMS
THE GEAR BY THE MOLDING

GENERATING PROCESS. ITS TEETH
COINCIDE WITH THOSE OF THE
HOB, WHEN THE LATTER IS SET

AS SHOWN.
Machinery

Fig. 10. Molding-generating Method for Cutting Spiral Gears as

Exemplified in the Hobbing Process

is stopped, so that both the spindle and work cease to revolve.

To make it possible to feed the hob through the work in the

direction of line XX without having the,teeth of the one strike

against the other, it will be necessary to revolve either the work

or the hob. Suppose that the work be connected by change

gearing with the feed-screw of the cutter slide, so that it is re-

volved as the cutter is fed up or down. Under these conditions

the cutter may be moved through the work freely, the latter

revolving to allow the cutter to pass. Not only must the work

revolve in a definite relation with the feeding of the cutter slide,
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but the work must also revolve in unison with the cutter or hob,

as for spur gears. It must then be so connected with the cutter

and with the cutter-slide feed-screw that it will be under the

influence of either or both of them, without any interference of

the two movements with each other. This connection is usually

made by a
"
jack-in-the-box" or differential mechanism, exactly

identical in principle with that shown in Fig. 6 for combining

the indexing and helical feeding movements for revolving the

work in the Reinecker universal machine. In the case of the

CUTTER SLIDE FEED SCREW

CUTTER DRIVING SHAFT

DRIVING SHAFT OF MACHINE

DIFFERENTIAL, OR JACK-IN-THE-BOX GEARING

WORM FOR REVOLVING WORK, TABLE

HANGE GEARS FOR LEAD OF SPIRAL

HANGE GEARS FOR RATE OF FEED

Machinery

Fig. ii. Typical Arrangement of Gearing for Spiral Gear Hobbing
Machine

spiral gear bobbing machine we have a helical feeding move-

ment and a cutter spindle movement to combine for revolving

the work.

A typical arrangement of the mechanism used for this purpose

is shown in diagrammatic form in Fig. n. Power is applied to

the machine through driving shaft G. The bevel gears shown

connect this driving shaft with vertical shaft //, by means of

which the hob is driven. Change gears shown connect shaft

G with shaft E. Considering for the time being that worm-
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wheel B and the attached bevel gear D are stationary, the rota-

tion of E and the cross-arm A keyed to it will cause bevel gears

C to roll around on stationary gear D, thereby revolving gear L
and shaft F to which it is keyed, thus rotating the work table.

The change gears connecting G and E are selected to give the

proper ratio of movement between the hob or cutter spindle,

and the work table, to agree with the number of threads in the

hob and the number of teeth in the gear being cut. The cutter-

slide feed-screw K is connected by change gears with shaft 7,

which is, in turn, connected through the clutch and the bevel

gears shown with shaft E. The clutch furnishes the means of

stopping and starting the feed, and the change gears serve to

give the rate of feed desired. Change gears are also provided

connecting bevel gear M on feed-screw K, with worm L, which

drives worm-wheel
, running loosely on shaft E. By this

means, supposing for the moment that shaft E and its attached

cross-arm A are stationary, the rotation of the feed-screw is

communicated through the change gears to worm-wheel B and

its attached bevel gear D, which, driving bevel pinions C on their

stationary studs, revolve gear L, and with it shaft F and the

worm driving the work table. In this way, by selecting suitable

change gears, the work may be revolved to agree with the length

of the lead of the spiral on which its teeth are formed, so that

the cutter may be fed up and down through it without inter-

fering with the teeth.

It will be seen that the mechanism shown in Fig. n may be

arranged to connect the hob and the work in the proper ratio,

as for cutting spur gears, and also for connecting the feed-screw

and the work in the proper ratio as for cutting spiral gears in

the milling machine. This mechanism not only performs these

two functions separately, but it will perform them together, as

well, so that either the feed or the cutter revolving mechanism

may be started, stopped or reversed independently of the other

movement, and the work will still be properly controlled under

all conditions. The mechanism shown is not that invariably

used, but it is typical of the arrangement employed in many
hobbing machines designed for cutting helical gearing.
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Field of the Robbing Process for Helical Gears. There are

some limitations to the hobbing process for cutting helical gears.

It is not particularly successful in the cutting of gears of such

small lead and great helix angle that they would be classed as

worms, rather than spiral gears. For such cases the rate of

rotation which has to be given the blank is so great in propor-

tion to the downward feed of the cutter by which the rotation is

effected (through the change and differential gearing) that it is

almost impossible to drive it, the difficulty being the same in

kind, though reversed in direction, as that met with in cutting

very steep pitches in the lathe. By a slight complication of the

machine, however, mechanism could be introduced to overcome

this difficulty, and make the hobbing machine universal for all

kinds of gears within its range.

In discussing the hobbing processes for cutting spur gears, it

is often stated that its field is not yet definitely determined. It

may be said, on the whole, that there is no such indefiniteness

in regard to the field of the hobbing machine for cutting helical

gears. With a well-constructed machine and with hobs of

proper shape, spiral gears can be cut more accurately and cheaply

by this method than by any other process known. There are

none of the mechanical difficulties of indexing and relieving to

be taken care of as is the case in automatic machines working
on the formed cutter process; and there are none of the uncer-

tainties as to tooth shape due to interference met with in cutting

a helical groove with a formed cutter, as shown in Fig. 2. There

has been some little difficulty in getting the correct shape of

teeth by the hobbing process, due to the elasticity of the mechan-

ism connecting the hob and the work, and to errors in the con-

struction of the hob itself. These difficulties, however, will

surely disappear with further experience and investigation.

Apparently the recent rapid development of the hobbing

process for cutting spiral gears is the solution of a problem which

has long seemed somewhat perplexing. The flexibility of the

spiral gear, and the numerous advantages of the herringbone or

the twisted-tooth spur gear for transmitting great power noise-

lessly and smoothly even at high velocities, have long been ap-
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predated, but their extended use has waited for the development
of some accurate and inexpensive method of forming helical teeth.

Calculating Gears for Generating Spirals on Robbing Ma-
chines. From time to time formulas have been developed for

calculating the gears to be used for generating spiral gears.

Those published in the past, however, have applied only to cer-

tain types of gear-hobbing machines. In the following a formula

is given which was first published in MACHINERY, December,

1911, and which is applicable to any type of gear-hobbing ma-

chine, and which is simpler to use than any formula that had

been published up to that time. In developing this formula,

simple arithmetical expressions have been made use of, as far as

possible, in order to make it especially useful to the practical man.

In order to clearly understand the use of any formula, it is

necessary to know something of the principles involved. Fig. 1 2

shows a top view of a standard bobbing machine (the No. 3

Farwell) designed for cutting spur gears. Before dealing with

the change-gear ratios for spiral work, it will be well to have the

methods for cutting spur gears properly understood. Assume
the hob to be single threaded. It is evident that for each rev-

olution of the hob, the gear being cut must move one tooth.

Therefore, the hob revolves, for each revolution of the blank,
as many times as there are teeth to be cut. To cut 44 teeth,

the table must be geared to revolve once for every 44 revolutions

of the hob.

The bevel gearing at Z), Fig. 12, has a ratio of 3 to i, the worm
at E is double-threaded, and the worm-wheel F has 40 teeth.

Hence, the shaft B must revolve 3 X 44 times for each revolution

of the table, and the worm shaft C must revolve 20 times for each

revolution of the table. Hence, we have:

Revolutions of B _ 3 X 44

Revolutions of C 20

Inverting this ratio to get the change-gear ratio required to

obtain this result, we have:

20 _ Product of No. of teeth in driving gears

3 X 44 Product of No. of teeth in driven gears
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In the following formulas we will designate the product of

the number of teeth in the driving gears P t
and the product of

the number of teeth in the driven gears p.

Should we use a double-threaded or triple-threaded hob, the

gear we are cutting must revolve two or three teeth for each rev-

olution of the hob; in other words, the speed of the table is in-

creased directly as the number of threads on the hob, so we
must multiply the number of teeth in the driving gears by the

number of threads on the hob, giving us this formula:

20 X No. of threads on hob _ P
3 X No. of teeth to be cut p

A similar formula may be worked out in this way for any type
of gear hobber.

Generating Spirals. For each revolution of the table the

head carrying the hob feeds down a certain distance across the

face of the blank, this distance varying from o.oio to 0.150 inch

in common practice. To fully understand the following dis-

cussion, the action of the machine, as illustrated in Figs. 13 to 16,

inclusive, should be noted. In Fig. 13 is shown the generation

of a right-hand spiral gear with a right-hand hob; in Fig. 14

a' left-hand spiral gear with a right-hand hob; in Fig. 15 a left-

hand spiral gear with a left-hand hob; and in Fig. 16 a right-

hand spiral gear with a left-hand hob. In each of these illus-

trations the direction of rotation of the table is indicated by the

arrow showing the direction of rotation of the gear being cut.

The direction of rotation of the hob is also indicated by an arrow

showing the direction of rotation of its shaft. In Figs. 13 and

15, where a gear is cut with a hob of the same "hand/' the angle

a, as indicated, equals the difference between the tooth angle

and the thread angle of the hob. In Figs. 14 and 16, where the

gear and the hob are of different "hand," the angle a equals

the sum of the tooth angle and the thread angle of the hob.

After this preliminary introduction, we are ready to deal intelli-

gently with the problem in hand.

Assume the spiral gear shown in Fig. 17 to have sixty-four

teeth. As indicated, the gear has a left-hand spiral and we will
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assume that it is cut with a left-hand hob. A single-threaded

hob cutting a spur gear would revolve sixty-four times for

one revolution of the table; but since in this case the teeth

are helical and the hob travels downward a certain distance,

the position of the gear tooth must be advanced somewhat for

every revolution with relation to the hob. In other words,

Machinery

Fig. 13. Cutting a Right-hand Spiral Gear with a Right-hand Hob

Machinery

Fig. 14. Cutting a Left-hand Spiral Gear with a Right-hand Hob

if the hob revolves sixty-four times, sixty-four teeth will have

passed by, but the blank is not in the same position as at

the beginning.

In Fig. 17 G represents the position of the hob axis at the

beginning of the cut and H the position of the hob axis after the

hob has made sixty-four revolutions. This shows that the blank

must make more than one revolution in this case. If we were

cutting a left-hand spiral gear with a right-hand hob, as shown

in Fig. 14, the blank would have to make less than one complete
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revolution for each sixty-four revolutions of the hob, the blank

in this case being revolved in the opposite direction. It will

thus be seen that when cutting a gear of the same "hand" as

the hob, the table must revolve slightly faster than it would have

to do when cutting a spur gear with the same number of teeth;

but when the hob and the gear are of opposite "hand,
"
the table

must revolve more slowly than when cutting a spur gear. This

Machinery

Fig. 15. Cutting a Left-hand Spiral Gear with a Left-hand Hob

Machinery

Fig. 16. Cutting a Right-hand Spiral Gear with a Left-hand Hob

has an important bearing upon the formula we are about to

construct.

To gear the machine properly we must first find the ratio

according to which the table is required to lag behind or lead

ahead of its natural speed relative to the hob. In the first

formula devised by the author for the bobbing of spiral gears,

the ratio was arrived at by considering the number of revolutions

made by the hob, while the table makes one full revolution.
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The formula thus constructed for the No. i Farwell gear-hobbing
machine is:

30 X No. of threads on hob P
No. of teeth

[ (feed X tan of angle) -f- circ. pitch] p
This applies only to one particular machine. A later formula

designed for the No. 3 Farwell machine, as shown in Fig. 12,

considers the number of table revolutions required while the hob

revolves a sufficient number of times to represent one revolu-

tion of the table, if we were cutting a spur gear:

20
2O

Pitch circumference -f- (feed X tan of angle)

(3 X No. of teeth) -=- No. of threads on hob
P_

P

Machinery

Fig. 17. Diagram showing Advance Required in Table Motion when
Cutting a Left-hand Spiral Gear with a Left-hand Hob

Being called upon to derive another formula to be used for the

new No. 3 Farwell universal hobbing machine, it occurred to the

originator of these formulas, that a formula adapted to all

hobbing machines would avoid much confusion. In the follow-

ing is given the process by which such a formula was derived;

the result is a simpler formula than any previously used.

Universal Formula. The "
lead

"
of a spiral gear is the

axial length of the blank in which one spiral tooth makes a com-

plete turn around the blank. Now, in hobbing a gear with a

width of face exactly equal to the lead, it is evident that the

blank must gain or lose one complete revolution as compared
with the number of revolutions that would be made in cutting

a spur gear with the same width of face and using the same feed

per revolution of the blank. Assume that it is desired to cut a
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30-tooth, io-pitch, right-hand spiral gear of 45-degree angle,

using a single-threaded right-hand hob and feeding -$ inch across

the face of the blank for each revolution of the blank.

The rule for finding the lead of a spiral gear is:

Pitch circumference X cot of tooth angle
= lead.

To get the pitch circumference, first find the pitch diameter;

the rule for finding this in a spiral gear is:

Pitch diameter of spur gear -f- cos of tooth angle
=

pitch

diameter of spiral gear with the same number of teeth and

pitch.

A 30-tooth, io-pitch spur gear would have a pitch diameter

of 3 inches. Referring to a table of trigonometrical functions

it will be found that the cosine of 45 degrees is 0.70711; then,

3 -f- 0.70711
= 4.242 inches, which is the pitch diameter of the

spiral gear. Multiplying this by 3.1416 gives 13.3267 inches,

which is the pitch circumference of the spiral gear. Since the

cotangent of 45 degrees is exactly i, multiplying by this gives

the same quantity (13.3267 inches) as the lead.

The next step is to find how many times the blank must re-

volve while the hob feeds 13.3267 inches across its face. Since

the feed is ^ incn (-3 I2 5) f r eacn revolution, we can divide

by 0.03125 or multiply by 32 to get the number of revolutions.

This gives 426.454 revolutions. The table has been traveling

faster in relation to the hob than would be the case in cutting a

spur gear with the same number of teeth; in fact, the table has

gained exactly one revolution on the hob. In other words, the

table speed in cutting this spiral gear is to the table speed in

cutting an equivalent spur gear as 426.454 is to 425.454. From
this we may construct the following formula:

Lead -r- feed _ required table revolutions

(Lead -5- feed) i normal table revolutions

For a gear of opposite "hand" from that of the hob the sign

would be changed to + in this formula. Use the sign only

when gear and hob are of the same "hand."

By adding a 4 2 6-tooth gear to the drivers and a 4 2 5-tooth

gear to the driven gears in the regular combination used to cut
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a 3<>tooth spur gear, we would get approximately the desired

ratio, but for greater accuracy we can carry the figures to a few

decimal places and factor:

42,645 _ 8529 _ 3 X 2843

42,545 8509 67 X 127

but 2843 is a prime number. We, therefore, try

4265 __853

4255 851

but 853 is a prime number. We, therefore, try

4264 = 2132 ^ 4 X 533

4254 2127 3 X 709

but 709 is a prime number. Hence we must make another

slight change and try again, remembering that whatever change
is made in the numerator must be exactly duplicated in the

denominator to maintain the ratio as nearly as possible. The

dropping of all decimals would cause a very small error, but

dropping them from one side only would cause a great error.

We find upon trial that

426 _ 2 X 3 X 71

425 ~5 X5 X 17

Multiplying this with the change-gear combination ordinarily

used to cut spur gears with 30 teeth, we have the gear com-

bination required for any gear-hobbing machine used for cutting

this gear. Thus, on the No. 3 Farwell universal hobbing ma-

chine, the spur-gear ratio for cutting 30 teeth is f--, which multi-

2 X "3 X 7i 3 X 7i
plied by * '

gives
' and arranging this ratio' 5X5 X i7

S 5X5X17
in convenient gear sizes, we have:

24 X 71 _ product of teeth of driving gears

40 X 85 product of teeth of driven gears

It will be noted that the last operation before factoring was to

divide by the feed. Should prime numbers be encountered re-

peatedly in trying to factor, it is possible to get altogether new

figures to work with, by making a slight change in the feed and

dividing into the lead again.
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Having found the gears, set the feed for exactly ^ inch per

revolution, see that the table is revolving in the right direction,

and tilt the hob spindle to bring the thread angle to 45 degrees

and the machine is ready for business.

Recapitulation and General Remarks. The general formula

for gearing any hobbing machine for generating spiral gears is

thus:

L + F P _ 5

in which

L = lead of spiral;

F = feed per revolution;

P = product of driving gears for cutting spur gears with

same number of teeth;

p = product of driven gears for cutting spur gears with

same number of teeth;

S product of driving gears for cutting spiral gears;

s = product of driven gears for cutting spiral gears.

Use + sign when gear and -hob are of opposite "hand," and

sign when they are of the same "hand."

In cutting teeth at large angles it is desirable to have the hob

the same hand as the gear, so that the direction of the cut will

come against the movement of the blank, but at ordinary angles

one hob will cut both right- and left-hand gears.

The actual feed of the cutter depends upon the angle of the

teeth as well as on the vertical movement of the hob. This

is obtained by dividing the vertical feed by the cosine of the

tooth angle; thus:

-^ 5 = 0.043 inch actual feed.

0.70711

The last computation need not be made except to see that we

are not figuring on too heavy a cut, as it has nothing to do with

the gearing of the hobbing machine. In setting up a hobbing

machine for spiral gears, care should be taken to see that the

vertical feed does not trip until the machine has been stopped or

the hob has fed down clear of the finished gear. Should the
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feed stop while the hob is still in mesh with the gear and revolv~

ing at the ratio required to generate a spiral, the hob will cut into

the teeth and spoil the gear.

Should the thread angle of the hob be exactly equal to the

tooth angle of the spiral gear, and both hob and gear be the

same "hand," the axis of the hob spindle will be at right angles

to the axis of the gear. This is in conformity with the rule that

when hob and gear are of the same "hand," the hob spindle is

set at the tooth angle minus the thread angle of the hob. In

cutting a spiral gear to take the place of a worm-wheel, it is pos-

sible to use the same hob that was used in cutting the worm-

wheel. This would be a case where it is not necessary to tilt

the hob spindle. Sometimes multiple-threaded hobs are used

in order to make the thread angle approximately equal to

the tooth angle, when it is desired to cut spiral gears with

machines on which the hob spindle swivels through only a

small angle.

Examples of Calculations. As an example of the application

of the formula given for finding the gears for spiral gear hobbing,

assume that two spiral gears are to be cut on a gear-hobbing

machine. Gear No. i has 30 teeth, 24. 549-inch lead and a feed

of gV inch. The change gears used on the machine for cutting

a spur gear with 30 teeth have 48 (driving gear) and 60 (driven

gear) teeth, respectively. The hob and gear are of the same

"hand."

Gear No. 2 has 60 teeth, 49.o98-inch lead and is cut with a

feed of ~IQ inch. The change gears used to cut a spur gear with

60 teeth, on this machine, have 48 and 40 teeth, for the driving

gears, and 60 and 80 teeth, for the driven gears. The hob and

gear are of the same "hand."

In the problems given the data are thus as follows :

30-tooth 6o-tooth
Gear Gear

L 24.549 L 49.098
F W4 F Me
P 48 P 40X48
p 60 p 60X80

The same notation as in the formula just given is used.
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Calculations for Thirty-tooth Gear. By inserting the values

given, we find that:

L-T- F _ 589.176

(L + F) i

~
588.176

The ratio written above can be simplified to the form ||f .

Factoring, we have:

589 _ 19 X 31

588 12 X 49

Now, multiply this value with the ratio of the gears for a 30-

tooth spur gear:

19 X 31 x 48 _ 76X31
12 X 49 60 60 X 49

Having obtained the gears that should be used, we may now

investigate what lead these gears will give. Apparently they

will not give the exact lead desired, as we have used an approx-

imate ratio instead of the exact one.

To prove, assume F =
% and solve for L.

L + F

(L -s- F)
- i 588

From this we find L =
24.541, which is very nearly equal to

the required lead.

Calculations for Sixty-tooth Gear. By proceeding in the

same way for the 60-tooth gear we have :

L + F
_ 785.568

(L-5-/0-I 784-568

We then factor the fraction ||f ,
thus:

785 _ 5 X i57

784 4 X 196

As 157 is a prime number, and gives too large a number of

teeth for any of the gears in the train, we try \||- which ratio

is very nearly equivalent to that required.

784 _ 49 X 16

783 29 X 27

Multiply this value with the ratio of the gears for a 6o-tooth

spur gear:
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49 X 16 40 X 48 _ 49 X 32

29 X 27 60 X 80 29 X 135'

Possibly the i35-tooth gear is impracticable, on account of

being too large, in which case the other combination must be

tried.

If the lead resulting from the gears found is calculated in the

same manner as in the previous case, we find that

L =
49.001.

Influence of Small Changes in the Ratio on the Lead. It is

interesting to note that a comparatively slight change in the
r .

-p

ratio zir
- makes a very decided change in the lead

(L -s- f)
- i

obtained. To illustrate, assume that in the first example given
the ratio -f-ff

=
1.001701 were changed to 1.002; let us see what

effect this change would have on the lead obtained (F =
%) :

(L + F)
- i

= i.002.

If we solve for L in this equation we find L =
20.875, which is

a very different lead from the one we wish to obtain.

Advantage of Differential Mechanism on Gear-hobbing Ma-
chines in Calculating Change Gears. When generating helical

gears on hobbing machines without a differential, the required
ratio which combines index and feed gears must be calculated

to a great many decimals, as otherwise a large error will result

which will impair the accuracy of the gears. It frequently hap-

pens that the required ratio consists of prime numbers, especially

when cutting right- and left-hand gears with one hob. To pro-
duce correct helical gears with their axes standing parallel to

each other, the errors for the right- and left-hand spirals must
be absolutely the same, otherwise there will not be a bearing on

the whole length of the teeth. In fact, exactly the same condi-

tions exist with helical gears as with spur gears. If, for instance,

the teeth of one of two spur gears stood at an angle of only a few

seconds with its axis, the bearing would be at one end of the

teeth only.
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Furthermore, if the hobbing machine has a differential, it is

not necessary to have a right- and left-hand hob when cutting

any angle up to 30 degrees; on the contrary, a higher efficiency

is obtained when using only one hob for both right- and left-hand

spirals. The reason for this is very simple; if there is any dis-

tortion in hardening, the right-hand hob will be different from

the left-hand.

It has been mentioned before that the ratio must be calculated

to several decimals when cutting the gears on machines without

a differential. The belief of many mechanics that the ratios

and errors obtained by formulas are alike for all hobbing ma-

chines, with or without differential mechanism, is entirely erro-

neous. There is a great difference between the two ratios. In

the one case the ratio represents the value of the indexing and

the helical movement, and the slightest change of the
"
driver,"

viz., numerator, will cause a great error if the "driven/' viz.,

denominator, is not also changed in the same proportion. In

the other case, i.e., with the differential, the ratio obtained refers

to the angle or helical movement only, and adds or subtracts

itself automatically to or from the ratio of the indexing gears.

The indexing gears required for cutting helical gears are given
on a chart and can be read off the same as for spur gears. This

is impossible without the differential. The difference between

the two ratios is explained in the following example.

Example. Gear, 48 teeth; 10 pitch; 20 degrees; ^ inch

feed per revolution of table.

Gear ratio of machine with differential for 20 degrees =

1.2052784.

If we deduct i from the third decimal which is 5, and omit

the rest, we have 1.204 = ratio for 19 degrees 58 minutes 42 sec-

onds; i.e., i minute 18 seconds difference.

This shows how slight the error would be if we were to change
the third decimal; in practice the change is made on the fifth

decimal, and the error almost eliminated.

For the same pitch, number of teeth, angle and feed, the

gear ratio for one of the machines without a differential equals

1.2517385. If here we were to deduct i from the third decimal
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and omit the rest, the result would be that instead of generating

teeth the material would simply be milled off from the blank.

This is explained as follows: Gear ratio for 20 degrees is 1.2517385.

When deducting i from the third decimal we obtain 1.250, which

is the spur-gear ratio.

The Schuchardt & Schiitte gear-hobbing machines are pro-

vided with a differential which on the new type of machines is

independent of the feed and indexing; in other words, when

changing the number of teeth, or feed, or from right- to left-

hand gear, no calculation is required. Thus the great advantage
of the differential mechanism is that the helical movement is

not disturbed whatever when the number of teeth is increased

or decreased or the feed is changed. Suppose we intend to gen-

erate helical gears with 30, 40, 56 and 60 teeth, of which those

having 40 and 60 teeth are left-hand, and those having 30 and

56 teeth are right-hand; the spiral angle is 15 degrees; the pitch

is 10. The material is supposed to be cast iron; therefore ^g-
inch feed per revolution of the table would be selected as the

proper one. All the gears are to be cut with one right-hand

lo-pitch hob. In calculating the change gears used when gen-

erating these gears on the Schuchardt & Schiitte machine but a

few minutes will be required, the following formula being used:

Constant X sine of angle X pitch^ = ratio.
i

0.3524 X 0.25882 X io _ 912 _ 19 X 48 _ driving gears

i 1000 20 X 50 driven gears

On machines not provided with a differential mechanism,

every gear of the same pitch, with only a different number of

teeth, must be calculated for separately, and the slightest change
in the feed will require a separate calculation. A change in the

formula must also be made, if right- and left-hand gears with the

same number of teeth are cut with one hob.

The differential is also of great importance when cutting

worm-gears with a taper hob. Worm-gears for worms with

multiple threads ought to be generated with taper hobs if high

efficiency is required.



CHAPTER V

HOBS FOR SPUR AND SPIRAL GEARS

Robbing vs. Milling of Gears. The adverse criticism of the

gear-hobbing process has been the cause of many interesting in-

vestigations, and one of the most important of these has been

the comparative study of the condition of the surfaces produced

by the hob and by the rotary cutter. In making such a com-

parative study, it is necessary that the investigator possess the

required practical knowledge, and also that he be willing to admit

a point, even though his favorite processes may suffer by the

comparison.

Feed Marks Produced by Rotating Milling Cutters. While

both the gear-hobbing machine and the automatic gear cutter

use rotating cutting tools, the operations cannot be placed on

a common basis and considered as similar milling operations,

although they may, to a certain extent, be compared as such.

In comparing the quality of the surfaces produced by the two

processes, consider first the milled surface produced by an ordi-

nary rotary cutter. This surface has a series of hills and hollows

at regular intervals, the spacing between these depending upon
the feed per revolution of the cutter, and the depth on both the

feed and the diameter of the cutter. The ridges are more prom-
inent when coarse feeds and small diameter cutters are used.

These feed marks are the result of the convex path of the cutting

edge and the slight running out of the cutter, which is inevitable

in all rotary cutters with a number of teeth. As is well known

to those familiar with milling operations, the spacing of the

marks does not depend on the number of teeth in the cutter.

Theoretically, it should depend on this number, but as it is prac-

tically impossible to get a cutter which will run absolutely true

with the axis of rotation, only one mark is produced for each

revolution, and, hence, the spacing becomes equal to the feed

137
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per revolution. The eccentricity of the cutter with the axis of

rotation is, therefore, the factor which, together with the diam-

eter of the cutter and the feed per revolution, determines the

quality of the surface, other conditions being equal.

The depth of the hollow produced by the high side of the re-

volving cutter is equal to the height or rise of a circular arc, the

radius of which equals the radius of the cutter, and the chord

of which equals the feed per revolution. (See Fig. i.) The

length of the chord or the feed per revolution may be expressed :

F = 2 X V 2HR-H2

in which F = feed per revolution;

H = height of arc;

R = radius of cutter.

Machinery

Fig. i. Diagram illustrating the Re- Fig. 2. Diagram for finding Depth
lation between Feed, Diameter of of Feed Marks on Side of Tooth
Cutter and Depth of Feed Marks cut by Milling Cutter

Since F2
is a very small quantity, it may be discarded in the

expression, which is then simplified to read:

F = 2 X

in which D = diameter of cutter.

Transposing this expression, we obtain H =
,
which is

an approximately correct expression of the depth of the hollows

produced by milling. As an example, take an 8-pitch rack

cutter, with straight rack-shaped sides, 3 inches in diameter,
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milling with a feed per revolution of o.i inch. The depth of the

feed marks at the bottom of the cut will be equal to :

( \2
^ = 0.0008

?>
inch.

4X3
The working surface of the tooth, however, is produced by

the side of the cutter, as illustrated in Fig. 2,^and the depth of

the feed marks is normal to the surface, and is expressed as:

d = H X sin a

in which d = depth of the feed marks on the side of the tooth,

and a the angle of obliquity. In the example given, the depth
d would equal 0.00021 inch, for a i4-degree involute tooth.

The depth of the feed marks is inversely proportional to the

diameter of the cutter, and is, therefore, greater at the point of

Fig. 3. Angle which

limits the Feed
Fig. 4. Diagram for deducing Formulas for

analyzing Action in Gear Hobbing Machine

the tooth than at the root. In the example given the depth
would be 0.00025 inch at the extreme point of the rack tooth.

It is thus apparent that the quality of the surface at any posi-

tion along the tooth from the root to the point depends upon
the diameter and form of the cutter and the feed per revolution.

In Fig. 3 is shown the outline of a No. 6 standard i4j-degree

involute gear cutter. This outline, at the point close to the end

of the tooth of the gear, is a tangent inclined at an angle of 45

degrees, as indicated. Hence, the depth of the revolution marks

is:

^ X sin 45 = 0.000707 inch, instead of 0.00024 inch, as
4 X 2.5

in the case of the straight rack tooth. It is evident that to pro-

duce an equal degree of finish with that left by the rack cutter,

the feed must be considerably less for a No. 6 involute gear
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cutter than for the rack cutter. In Fig. 5 is shown the full range

of cutter profiles from Nos. i to 8, with the angle of the tangent

in each case which determines the quality of the surface under

equal conditions of feed and diameter of cutter.

If the depth of the feed marks is used as the determining factor

in comparing the condition of the surfaces produced by a series

of cutters, it is evident that if the surface produced by the rack

cutter is taken as a standard, the feed for cutting a pinion must

be considerably less than the feed used for cutting gears with a

large number of teeth. In fact, if a rack cutter is fed o.ioo inch

per revolution, a No. 8 standard involute gear cutter should

not be fed more than 0.055 mcn Per revolution to produce an

equally good surface. The feed is proportional to the square

No.1 No. 2 No. 3

Fig. 5. Angles limiting theJTeed for 14'^-degree Standard Gear Cutters

root of the reciprocal of the sine of the angle of the limiting tan-

gent.

If we assume the accuracy of the surface left by the straight-

sided rack cutter as equal to 100 per cent, then the relative feeds

required for cutting gears with any formed cutter can be cal-

culated. This has been done, and the results are shown plotted

in curve A
t
in Fig. 6. This curve is based on an equal depth of

the feed marks for the full range of numbers of teeth in the gears.

If, on the other hand, the surfaces left by the cutter for a given

feed per revolution are compared, the depth of the feed marks

will vary with the sine of the angle of the limiting tangent, and

taking the straight-sided rack cutter as a basis, the relative

accuracy of the surfaces is inversely proportional to the sine of

the angle, and is plotted in curve B, in Fig. 6.

Comparison between Surfaces Produced by Milling and Rob-

bing. A relation has now been established between the quality

of the surface and the permissible feeds for cutters for cutting

gears with any number of teeth. We will now consider the con-

dition of the surface produced by a hob in a gear-hobbing ma-
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chine. The hob is made with straight-sided rack-shaped teeth

and with sides of a constant angle, and is used to produce gears

with any number of teeth. We may therefore assume that it is

cutting under the conditions governing the rack cutter, as just

explained, the surface produced being considered merely as a

milled surface. If this assumption be correct, then the quality

of the surface produced by a hob, whether cutting a gear of twelve

teeth or of two hundred teeth, will be the same for a given feed,

90
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Fig. 6. Diagrams showing the Relation between Feed, Finish, and
Number of Teeth when cutting Gears with Formed Gear Cutters

and the same relation exists between the hob and any formed

cutter that exists between the rack cutter and any formed cutter;

hence, curves A and B, in Fig. 6, may be assumed to show the

permissible feeds and the quality of the surfaces produced by
formed cutters when compared with the surfaces produced by
a hob, provided the surfaces are considered merely as milled

surfaces. However, a condition enters in the case of the hob

which has no equivalent in the case of the formed milling cutter,

a*id this influences the condition of the surface. This condition
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is the distortion of the hob teeth in hardening which causes them

to mar the surface of the tooth by "side swiping," producing a

rough surface. The eccentricity of the hob with the axis of

rotation also has a different effect on the surface than in the case

of a formed gear cutter. The effect is shown in a series of flats

running parallel with the bottom of the tooth, if excessive;

if the eccentricity is small, the effect will merely be to round the

top of the tooth. These inaccuracies, however, can be taken care

of in a number of ways.

Comparison of Output. For reasons not connected with the

quality of the surface, the hob may be worked at a greater cutting

Comparison of Time Required for Cutting Gears on Automatic Gear-

cutting Machines and Hobbing Machines
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of the cutter in all cases was 120 revolutions per minute, except

in the case of the i3-tooth pinion, when the speed was raised to

160 R.P.M. to increase the output. The hob was run at a speed

of 105 R.P.M. in all cases. The hob and cutters were of practi-

cally the same diameter. The results were obtained in producing

an ordinary day's work and clearly indicate the advantage of

the bobbing process over the milling process^ when the quality

of the tooth surface alone is considered, on the basis that both

processes produce a milled surface.

The Tooth Outline. Going further into the subject, we will

take up the question of the tooth outline. The tooth of a gear

milled with an ordinary milling cutter must be, or at least is

expected to be, a reproduction of the outline of the cutter, and

since each cutter must cover a wide range of teeth, the outline

is not theoretically correct, except for one given number of teeth

in the range. Theoretically speaking, the outline of the hobbed

tooth may be considered as a series of tangents, the tooth sur-

face being composed of a series of flats parallel with the axis of

the gear. To show the significance of these flats, assume, for

example, that a gear with thirty-two teeth is cut with a stand-

ard hob, 8 pitch, 3 inches in diameter, having twelve flutes.

The length of the portion of the hob that generates the tooth

surface is 2 S + tan a, where a is the pressure angle, as indicated

in Fig. 4. The number of teeth following in the generating

path is:

/ 2 S \

(
r- circular pitch ) X number of gashes.

Vtan a I

In this case the generating length is approximately 0.96 inch,

and there are thirty teeth in the generating path. The flats of

those parts of the tooth outline which each of the hob teeth form

vary in width along the curves. They are of minimum width

at the base line and of maximum width at the point of the tooth.

The width of the flats at the pitch circle is proportional to the

number of teeth in the gear, the number of gashes in the hob and

the pressure angle. The angle /3, to the left in Fig. 7, which is

the angle between each flat, is proportional to the number of
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teeth in the gear and the number of gashes in the hob. In the

example given it is:

360 x

3

=
0.91 degree, or 55 minutes.

The Width of Flat Produced. The width a of the flat at the

pitch line is equal to twice the tangent of one-half times the

ROOT
F TOOTH

Machinery

Fig. 7. Relative Width and Position of Flats produced by Gear
Hobbing Machines. A indicates Feed per Each Generating

Tooth; B, Feed per Revolution of Blank

length of the pressure line between the point of tangency with

the base line and the pitch point, and is:

a = 2 tan J X tan 14^ X 2 = 0.0081 inch.

This is not a flat that could cause serious trouble. As in the

case of the feed marks, it is not the width of the flat alone that is

to be considered, but the depth must be taken into account;

in fact, the quality of the surface may be spoken of as the ratio

of the depth to the length of the flat. The depth of the flat is

the rise or height of the arc of the involute and is approximately

proportional to the versed sine of the angle \ 0, and with the

pitch assumed in the example given would be 0.000015 inch. It

is difficult to conceive of any shock caused by this flat, as the

gear teeth roll over each other. The action of the hob and gear

in relation to each other further modifies the flat by giving it a

crowning or convex shape. In fact, the wider the flat the more
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it is crowned. This explains the fact that hobs with a few

gashes produce teeth of practically as good shape as hobs with a

large number of gashes. It is desirable, therefore, to use hobs

with as few gashes as possible, because from a practical point of

view the errors of workmanship and those caused by warping
in hardening increase with the number of flutes.

A peculiar feature of the hobbed tooth surface is shown to the

right in Fig. 7, which illustrates the path on a tooth produced by
a hob in one revolution. In fact, there are two distinct paths,

the first starting at the point of the tooth and working down to

the base line, the cutting edges of the hob tooth then jumping
to the root of the tooth and working up to the base line, pro-

ducing the zigzag path shown.

Summary of the Preceding Comparative Study. That the

flats so commonly seen in the results obtained from the hobbing
machine are not due to any faults of the process that cannot be

corrected, but are due to either carelessness on the part of the

operator in setting up the machine without proper support to

the work, or to the poor condition of the hob or machine, and

that nearly all cases of flats can be overcome by the use of a

proper hob, may be assumed as a statement of facts. When
the hobbing machine will not give good results, the hob is in

nearly all cases at fault. If a gear is produced that bears hard

on the point of the teeth, has a flat at the pitch line or at any point

along the face of the tooth, do not think that the process is faulty

in theory, or that the machine is not properly adjusted, or that

the strain of the cut is causing undue torsion in the shafts, or

that there is backlash between the gears in the train connecting

the work and the hob
;
these things are not as likely to cause the

trouble as is a faulty hob.

After an experience covering all makes of hobbing machines,

the author has come to the conclusion that the real cause of the

trouble in nearly every case is a faulty hob. Machine after

machine has been taken apart, overhauled and readjusted, and

yet no better results have been obtained until a new and better

hob was produced. The faults usually met with in hobs will be

referred to in the following, together with the means for getting
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the hob into a good working condition. It is not desired in any

way to disparage the formed cutter process in favor of the hobbing

process, but simply to state the facts as they appear. In every

case, practice seems to substantiate the conclusions arrived at.

Hobs for Spur and Spiral Gears. The success of the hobbing

process for cutting teeth in spur and spiral gears depends, as

stated, more upon the hob than upon the machine, and at the

present stage of development the hob is the limiting factor in

the quality of the product. It is well known that hobs at the

present time are far from being standardized, and that the product
will not be interchangeable if the hob of one maker is substituted

for that of another; in fact, the using of two hobs from the same

maker successively will sometimes result in the production of

gears which will not interchange or run smoothly. This is not a

fault of the hobbing process, but is due to the fact that the cutter

manufacturers have not given the question of hobs the study it

requires. This is also the reason why there are so many com-

plaints about the hobbing machine. Nevertheless, with the

proper hob the hobbing machine is the quickest method of machin-

ing gears that has ever been devised. Its advantage lies in the

continuous action and in the simplicity of its mechanism. There

is no machine for producing the teeth of spur gears that can be

constructed with a simpler mechanism, and even machines using

rotary cutters are more complicated if automatic.

Hobs with Few Teeth Give Best Results. The ideal form

of hob, theoretically speaking, would be one that had an infinite

number of cutting teeth. In practice, however, a seemingly

contradictory result is obtained, as hobs with comparatively few

teeth give the best results. The reasons for this are due to

purely practical considerations. Strictly speaking, a theoretical

tooth curve is no more possible when the tooth is produced by
the hobbing process than when produced by the shaper or planer

type of generator, but for all practical purposes, the curve gen-

erated under proper working conditions is so nearly correct as

to be classed as a theoretical curve. If this result is not often

met with under ordinary working conditions, it is due to the fact

that the hob is not as good as present practice is able to make it.



GEAR ROBBING 147

Causes of Defects in Hobbed Gears. In order to obtain, as

far as is theoretically possible, a proper curve and not a series of

flat surfaces, the teeth of the hob must follow in a true helical

path. In ninety-nine cases out of one hundred the hob is at

fault when a series of flats is obtained instead of a smooth curved

tooth face. It is the deviation of the teeth of the hob from the

helical path that is at the root of most hobbing machine troubles.

There are several causes for the teeth being out of the helical

path: The trouble may have originated in the relieving or form-

ing of the teeth
;
the machine on which this work has been done

Machinery

Figs. 8 and 9. Distortion of Hob Teeth and its Effect

may have been too light in construction, so that the tool has not

been held properly to its work, and has sprung to one side or

another causing thick and thin teeth in the hob; a hard spot

may have been encountered causing the tool to spring; the

gashes may not have been properly spaced, or there may have

been an error in the gears on the relieving lathe influencing the

form; the hob may also have been distorted in hardening; it

may have been improperly handled in the fire or bath, or it may
have been so proportioned that it could not heat or cool uniformly;
the grinding after hardening may be at fault; the hole may not

have been ground concentric with the form, thus causing the

teeth on one side of the hob to cut deeper than on the other.
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Any one or a combination of several of these conditions may
have thrown the teeth out of the true helical path.

Fig. 8 illustrates the difficulty of thick and thin teeth. The

tooth A is too thick and B is too thin, the threading tool having

sprung over from A and gouged into B. Fig. 8 also shows a

developed layout of the hob. At C is shown the effect that

thick and thin teeth may have on the tooth being cut in the

gear that of producing a flat on the tooth. This flat may
appear on either side of the tooth and at almost any point from

the root to the top, depending upon whether the particular hob

tooth happens to come central with the gear or not. If it does

come central or nearly so, it will cause the hob to cut thin teeth

in the blank. The only practical method to make a hob of this

kind fit for use is to have it re-formed.

In Fig. 9 is shown at A the result of unequal spacing of the

teeth around the blank. Owing to the nature of the relief, the

unequal spacing will cause the top of the teeth to be at different

distances from the axis of the hob. This would produce a series

of flats on the gear tooth. One result of distortion in hardening

is shown at B
} Fig. 9, where the tooth is canted over to one side

so that one corner is out of the helical path. This defect also

produces a flat and shows a peculiar under-cutting which at first

is difficult to account for. Sometimes a tooth will distort under

the effects of the fire in the manner indicated at D, Fig. 9.

These defects may be avoided by proper care and by having
the steel in good condition before forming. The blank should

be roughed out, bored, threaded, gashed and then annealed before

finish-forming and hardening. The annealing relieves the stresses

in the steerdue to the rolling process.

The proportions of the hob have a direct effect on distortion

in hardening. This is especially noticeable in hobs of large

diameter for fine pitches. Fig. 10 shows the results obtained in

hardening a 4-inch hob, 10 pitch, with ij-inch hole. There is

a bulging or crowning of the teeth at A . This is accounted for

by the fact that the mass of metal at B does not cool as quickly

as that at the ends. Consequently, when the hob is quenched,

the ends and outer shell cool most quickly and become set, pre-
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venting the mass at B from contracting as it would if it could

come in direct contact with the cold bath and cool off as quickly

as the rest of the metal. The effect of this distortion on the

shape of the gear teeth is indicated in Fig. n, where the tooth

A is unsymmetrical in shape due to the fact that the teeth near

the center of the hob cut deeper into the blank, under-cutting
the tooth on one side and thinning the point. This effect is pro-

duced when the gear is centered near the ends of the hob. If

the gear is centered midway of the length of the hob, the tooth

Machinery

Figs. 10 and n. Distortion of Hobs and Result on the Shape of

the Teeth

shape produced is as shown at B, Fig. n. This tooth is thick

at the point and under-cut at the root.

A hob in this condition makes it impossible to obtain quiet

running gears. In this case, it would be useless to anneal and

re-form the hob, as the same results would be certain to be met
with again, on account of the proportions of the hob. Hence,
defects of this kind are practically impossible to correct, and the

hob should either be entirely remade or discarded.

Figs. 12 and 13 show in an exaggerated manner two common
defects due to poor workmanship. In Fig. 12 the hole is ground
out of true with the outside of the tooth form. The hole may run

either parallel with the true axis of the hob, or it may run at an

angle to it, as seen in Fig. 13.

The effect of the first condition is to produce a tooth shaped
like that shown by the full lines at B in Fig. n, and the effect
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of that in Fig. 13 is about the same, except that the hob will

cut thin teeth when cutting to full depth. Gears cut by either

hob will lock with meshing gears, and instead of smooth rolling,

the action will be jerky and intermittent.

Gashes which originally were equally spaced may have become

unequally spaced by having more ground off the face of some

teeth than of others. The greater the amount of relief, the more

particular one must be in having the gashes equally spaced.

Grinding to Correct Hob Defects. These various faults may
be corrected to a greater or less extent in the following manner:

CENTER LINE
OF FORM "

CENTER LINE/
OF HOLE

Machinery

Figs. 12 and 13. Hobs with the Center Hole out of True with the
Outside of the Tooth Form

Place the hob on a true arbor and grind the outside as a shaft

would be ground; touch all of the teeth just enough so that the

faintest marks of the wheel can be seen on the tops. The teeth

that are protruding and would cause trouble will, of course, show

a wide ground land, while on those that are low, the land will

be hardly visible. Now grind the face of each tooth back until

the land on each is equal. This will bring all the teeth to the

same height and the form will run true with the hole. To keep

the hob in condition so that it will not be spoiled at the first re-

sharpening, grind the backs of the teeth, using the face as a

finger-guide, the same as when sharpening milling cutters, so as

to remove enough from the back of each tooth to make the dis-

tance AS, Fig. 12, the same on all the teeth. Then, when shar-

pening the teeth in the future, use the back of the tooth as a

finger-guide. If care is taken, the hob will then cut good gears

as long as it lasts. It is poor practice to use the index head when
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sharpening hobs, because the form is never absolutely true with

the hole, and unless the hob has been prepared as just described,

there is no reliable way to sharpen it. If the hob, after having

been prepared as described, is sharpened on centers by means

of indexing, it will be brought back to the original condition.

The defect shown in Fig. 13 is corrected in the same manner.

The gash when so ground will not be parallel with the axis in a

straight-fluted hob, nor will it be at an exact right angle with

the thread helix in a spiral-fluted hob, because the teeth at the

right-hand end are high while those at the left-hand end are

low, and the amount that must be ground off the faces of the

hob teeth will be greater at one end than at the other. The angle

will be slight, however, and of no consequence.

Shape of Hob Teeth. The first thing that is questioned when

a hob does not produce smooth running gears is the shape of the

hob tooth. The poor bearing obtained when rolling two gears

together would, in many cases, seem to indicate that the hob

tooth was of improper shape, but in nearly every case the trouble

is the result of one or more of the defects already pointed out.

Theoretically, the shape of the hob tooth should be that of

a rack tooth with perfectly straight sides. This shape will cut

good gears from thirty teeth and up, in the i^-degree involute

system, but gears under thirty teeth will have a reduced bearing

surface as a result of under-cutting near the base circle, which

increases as the number of teeth grows smaller. The shape pro-

duced by such a hob, if mechanically perfect, would be a correct

involute, and the gears should interchange without difficulty.

In order that the beginning of contact, however, may take place

without jar, the points of the teeth should be relieved or thinned,

so that the contact takes place gradually, instead of with full

pressure. This is accomplished by making the hob tooth thicker

at the root, starting at a point considerably below the pitch line.

This is illustrated in the upper portion of Fig. 14, which shows

the standard shape adopted by the Barber-Colman Co. The

shape of the tooth produced is also shown. The full lines show

the shape generated, and the dotted, the lines of the true involute.

The amount removed from the points is greater on large gears



152 SPIRAL GEARING

and less on small pinions, where the length of contact is none too

great even with a full-shaped tooth, and where any great reduc-

tion must be avoided. This shape of hob tooth does not, how-

ever, reduce under-cutting on small pinions. The fact that

bobbed gears have under-cut teeth in small pinions, while those

cut with rotary cutters have radial flanks with the curve above

the pitch line corrected to mesh with them is the reason why

Fig. 14. Forms of Hob Teeth and Gear Teeth Produced

hobbed gears and those cut with rotary cutters will not inter-

change.

In the lower part of Fig. 14 is shown a hob tooth shape which

will produce teeth in pinions without under-cutting, the teeth,

instead, having a modified radial flank. The radii of the cor-

rection curves are such that the gear tooth will be slightly thin

at the point to allow an easy approach of contact. The shape

shown is approximately that which will be produced on hobs,

the teeth of which are generated from the shape of a gear tooth

cut with a rotary cutter, which it is desired to reproduce.
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Diameters of Hobs. The diameters of hobs is a subject

which has been much discussed. Many favor large hobs because

the larger the hob the greater the number of teeth obtainable.

This, however, has already been shown to be a fault, because

the greater is the possible chance of some of the teeth being dis-

torted. For the same feed, the output of a small hob is greater,

because of being inversely proportional to the -diameter. The

number of teeth cut is directly proportional to the number of

revolutions per minute of the hob. The number of revolutions

depends on the surface speed of the hob; therefore, the small

hob will produce more gears at a given surface speed.

Machinery

Fig. 15. Illustrating Effect of Feed in Robbing

It may be argued that, on account of the large diameter, the

large hob can be given a greater feed per revolution of the blank

than the smaller hob, for a given quality of tooth surface. This

argument is analyzed in Fig. 15. Let R be the radius of the hob

and F the feed of the hob per revolution of the blank. Then B
may be called the rise of feed arc.

Since the surface of the tooth is produced by the side, the

actual depth of the feed marks is D, which depends on the angle

of the side of the tooth, the depth being greater for a 2o-degree

tooth than it would be for a i^-degree tooth for the same amount
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of feed. The relations between F, R, and B may be expressed

as follows:

F = 2 V2 RB-B2

Since B is a very small fractional quantity, B2 would be much

smaller and can, therefore, be disregarded, giving the very simple

approximate formula F = 2 V2 RB. A rise of o.ooi inch

would mean a depth D of about 0.00025 inch on a i4^-degree

tooth. The allowable feed is 0.126 inch for a 4-inch hob and

0.108 inch for a 3-inch hob for a o.ooi inch rise. The curve in
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reduces the output, as the greater amount of feed required before

the hob enters to full depth in the gear is a pure waste.

The question of whether the gashes or flutes should be parallel

with the axis or at right angles to the thread helix has two sides.

From a practical point of view, it appears to make very little

difference in the results obtained in hobs of small pitch and angle

of thread. In hobs of coarse pitch, however, the gashes should

undoubtedly be normal to the thread. The effect of the straight

gash is noticed when cutting steel, in that it is difficult to obtain

a smooth surface on one side of the tooth, especially when cutting

gears coarser than 10 pitch. What has been said in the fore-

going, however, applies equally to straight and spirally fluted

hobs.



CHAPTER VI

CALCULATING THE DIMENSIONS OF WORM GEARING

THE present chapter contains a compilation of rules for the

calculation of the dimensions of worm gearing, expressed with

as much simplicity and clearness as possible. No attempt has

been made to give rules for estimating the strength or durability

of worm gearing, although the question of durability, especially,

is the determining factor in the design of worm gearing. If the

worm and wheel are so proportioned as to have a reasonably

--H

SINGLE THREAD DOUBLE THREAD TRIPLE THREAD
Machinery

Fig. i. Diagram showing Relation between Lead and Pitch

long life under normal working conditions, it may be taken for

granted that the teeth are strong enough for the load they have

to bear. No simple rules have ever been proposed for propor-

tioning worm gearing to suit the service it is designed for. Judg-
ment and experience are about the only factors the designer has

for guidance. In Europe a number of builders are regularly

manufacturing worm drives, guaranteed for a given horsepower
at a given speed. Reference to the durability and power trans-

mitting properties of worm gearing will be made in a following

chapter.

156



RULES AND FORMULAS 157

Definitions and Rules for Dimensions of the Worm. In

giving names to the dimensions of the worm, there is one point

in which there is sometimes confusion. This relates to the dis-

tinction between the terms "pitch" and "lead." In the follow-

ing we will adhere to the nomenclature indicated* in Fig. i.

Here are shown three worms, the first single-threaded, the sec-

ond double-threaded, and the last triple-threaded. As shown,

the word "lead" is assumed to mean the distance which a given

thread advances in one revolution of the worm, while by "pitch,
"

or more strictly, "linear pitch," we mean the distance between

the centers of two adjacent threads. As may be clearly seen,

the lead and linear pitch are equal for a single-threaded worm.

DOUBLE THREAD

Fig. 2. Nomenclature used for Worm Dimensions

For a double-threaded worm the lead is twice the linear pitch,

and for a triple-threaded worm it is three times the linear

pitch. From this we have:

Rule i. To find the lead of a worm, multiply the linear pitch

by the number of threads.

It is understood, of course, that by the number of threads is

meant not the number of threads per inch, but the number of

threads in the whole worm one, if it is single-threaded, four,

if it is quadruple-threaded, etc. Rule i may be transposed to

read as follows:

Rule 2. To find the linear pitch of a worm, divide the lead by
the number of threads.
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The standard form of worm thread, measured in an axial sec-

tion, as shown in Fig. 2, has the same dimensions as the standard

form of involute rack tooth of the same linear or circular pitch.

It is not of exactly the same shape, however, not being rounded

at the top, nor provided with fillets. The thread is cut with a

straight-sided tool, having a square, flat end. The sides have

an inclination with each other of 29 degrees, or 14J degrees with

the center line. The following rules give the dimensions of the

teeth in an axial section for various linear pitches. For nomen-

clature, see Fig. 2.

Rule 3. To find the whole depth of the worm tooth, multiply
the linear pitch by 0.6866.

Rule 4. To find the width of the thread tool at the end, mul-

tiply the linear pitch by 0.31.

Rule 5. To find the addendum or height of worm tooth above

the pitch line, multiply the linear pitch by 0.3183.

Rule 6. To find the outside diameter of the worm, add

together the pitch diameter and twice the addendum.

Rule 7. To find the pitch diameter of the worm, subtract

twice the addendum from the outside diameter.

Rule 8. To find the bottom diameter of the worm, subtract

twice the whole depth of tooth from the outside diameter.

Rule 9. To find the helix angle of the worm and the gashing

angle of the worm-wheel tooth, multiply the pitch diameter of

the worm by 3.1416, and divide the product by the lead; the

quotient is the cotangent of the tooth angle of the worm.

Rules for Dimensioning the Worm-wheel. The dimensions

of the worm-wheel, named in the diagram shown in Fig. 3, are

derived from the number of teeth determined upon for it, and

the dimensions of the worm with which it is to mesh. The fol-

lowing rules may be used:

Rule 10. To find the pitch diameter of the worm-wheel, mul-

tiply the number of teeth in the wheel by the linear pitch of the

worm, and divide the product by 3.1416.

Rule ii. To find the throat diameter of the worm-wheel,
add twice the addendum of the worm tooth to the pitch diameter

of the worm wheel.
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Rule 12. To find the radius of curvature of the worm-wheel

throat, subtract twice the addendum of the worm tooth from

half the outside diameter of the worm.

The face angle of the wheel is arbitrarily selected; 60 degrees

is a good angle, but it may be made as high as 80 or even 90 de-

grees, though there is little advantage in carrying the gear around

^RADIUS OF CURVATURE OF THROAT=U

:E ANGLE= (

H X Machinery

Fig. 3. Nomenclature used for Worm-gear Dimensions

so great a portion of the circumference of the worm, especially

in steep pitches.

Rule 13. To find the diameter of the worm-wheel to sharp

corners, multiply the radius of curvature of the throat by the

cosine of half the face angle, subtract this quantity from

the radius of curvature of throat, multiply the remainder by

2, and add the product to the throat diameter of the worm-

wheel.
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If the sharp corners are flattened a trifle at the tops, as shown

in Figs. 3 and 5, this dimension need not be figured, "trimmed

diameter" being easily scaled from an accurate drawing of the

gear.

There is a simple rule which, rightly understood, may be used

for obtaining the velocity ratio of a pair of gears of any form,

whether spur, spiral, bevel or worm. The number of teeth of

the driven gear, divided by the number of teeth of the driver,

will give the velocity ratio. For worm gearing this rule takes

the following form:

Rule 14. To find the velocity ratio of a worm and worm-wheel,

divide the number of teeth in the wheel by the number of threads

in the worm.

Be sure that the proper meaning is attached to the phrase

"number of threads" as explained before under Rule i. The

revolutions per minute of the worm, divided by the velocity

ratio, gives the revolutions per minute of the worm-wheel.

Rule 15. To find the distance between the center of the worm-

wheel and the center of the worm, add together the pitch diam-

eter of the worm and the pitch diameter of the worm-wheel,

and divide the. sum by 2.

Rule 1 6. To find the pitch diameter of the worm, subtract

the pitch diameter of the worm-wheel from twice the center

distance.

The worm should be long enough to allow the wheel to act on

it as far as it will. The length of the worm required for this

may be scaled from a carefully-made drawing, or it may be cal-

culated by the following rule:

Rule 17. To find the minimum length of worm for complete

action with the worm-wheel, subtract four times the addendum

of the worm thread from the throat diameter of the wheel, square

the remainder, and subtract the result from the square of the

throat diameter of the wheel. The square root of the result is

the minimum length of worm advisable.

The length of the worm should ordinarily be longer than the

dimension thus found. Hobs, particularly, should be long enough

for the largest wheels they are ever likely to be called upon to cut.
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Departures from the Foregoing Rules. The throat diameter

of the wheel and the center distance may have to be altered in

some cases from the figures given by the preceding rules. If

worm-wheels with small numbers of teeth are made to the dimen-

sions given, it will be found that the flanks of the teeth will be

partly cut away by the tops of the hob teeth, so that the full

bearing area is not available. The matter becomes serious when

there are less than 25 or 30 teeth in the worm-wheel. One

method of avoiding this under-cutting is to increase the throat

diameter of the wheel blank in accordance with the following

rule: To obtain the throat diameter, multiply the pitch diameter

of the wheel by 0.937 and add to the product 4 times the adden-

dum of the worm-wheel tooth. This diameter can also be ob-

tained as follows: Multiply the product of the circular pitch

and number of teeth in the worm-wheel by 0.298; then add 1.273

times the circular pitch. If it is necessary to keep the original

center-to-center distance, the outside diameter of the worm

must be reduced the same amount that the throat diameter is

increased. When turning blanks, it is the general practice to

simply reduce the central part of the throat to the required diam-

eter, the remainder being left somewhat over size so that the tops

of the teeth will be finished to the proper radius by the hob.

On the other hand, some designers claim to get better results

in efficiency and durability by making the throat diameter of the

worm-wheel smaller than standard, where it is possible to do so

without too much under-cutting. Under no conditions, however,

should the throat diameter ever be made so small as to produce

more interference than is met with in a standard 25-tooth worm-

wheel.

Two Applications of Worm Gearing. Worm-wheels are used

for two purposes. They may be employed to transmit power
where it is desired to make use of the smoothness of action which

they give, and the great reduction in velocity of which they are

capable; instances of this application of worm gearing are found

in the spindle drives of gear cutters and other machine tools.

They are also used where a great increase in the effective power
is required; in this case advantage is generally taken of the
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possibility of making the gearing self-locking. Such service is

usually intermittent or occasional, and the matter of waste of

power is not of so great importance as in the first case. Exam-

ples of this application are to be found in the adjustments of a

great many machine tools, in training and elevating gearing for

ordnance, etc. Calculations for the general design of this class

of gearing will be treated separately in following chapters. In

the case of elevator gearing and worm feeds for machinery, the

functions of the gearing are, in a measure, a combination of those

in the two applications.

Examples of Worm Gearing Figured from the Rules. To
show how the rules given above may be applied, we will work

out two examples. The first of these is for a light machine tool

spindle drive, in which power is to be transmitted continuously.

It is determined that the velocity ratio shall be 8 to i, and that

the proper linear pitch to give the strength and durability re-

quired shall be about f inch; the center distance is required to

be 5 inches exactly. This case comes under the first of the two

applications just described.

Assume, for instance, 32 teeth in the wheel, and a quadruple-

thread worm. We will figure the gearing with these assumptions,

and see if it appears to have practical dimensions.

The pitch diameter of the worm-wheel by Rule 10 is found to

be

=
7.6394 inches.

The pitch diameter of the worm by Rule 16 is found to be

(2 X 5) 7.6394
=

2.3606 inches.

The addendum of the worm thread by Rule 5 is found to be

0.3183 X f =
0.2387 inch.

The outside diameter of the worm by Rule 6 is found to be

2.3606 + (2 X 0.2387)
=

2.8380 inches.

For transmission gearing the angle of inclination of the worm
thread should not be less than 18 degrees or thereabouts, and

the nearer 30 or even 40 degrees it is, the more efficient will it be.

From Rule i we find the lead to be 4 X 1 =3 inches.
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The helix angle of the worm thread is found from Rule 9 to

be 2.3606 X 3-1416 -T- 3
= 2.4722

= cot 22 degrees, approxi-

mately. This angle will give fairly satisfactory results. The

calculations are not carried any further with this problem,

whose other dimensions are determined from those just found.

In the following case, however, all the calculations are made.

For a second problem let it be required to design worm-feed

gearing for a machine to utilize a hob already in stock. This

Dimensions of Worm-thread Parts

Number

of

Threads

per

Inch
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To find the whole depth of the worm tooth, use Rule 3 : 0.5 X
0.6866 =

0.3433 inch.

To find the addendum, use Rule 5: 0.5 X 0.3183
=

0.15915
inch.

To find the pitch diameter of the worm, use Rule 7 : 2.5 2 X
0.15915 =

2.1817 inches.

To find the bottom diameter of the worm, use Rule 8: 2.5

2 X 0.3433
=

1.8134 inch.

To find the gashing angle of the worm-wheel, use Rule 9:

2.18 X 3.14 -T- i = 6.845 = c t & degrees, 20 minutes, about.

To find the pitch diameter of the worm-wheel, use Rule 10:

45 X 0,5 -T- 3.1416
=

7.1620 inches.

1-_1_

Machinery

Fig. 4. Shape of Blank for Worm

To find the throat diameter of the worm-wheel, use Rule n:

7.1620 + 2 X 0.15915 =
7.4803 inches.

To find the radius of the throat of the worm-wheel, use Rule 1 2 :

(2.5 + 2)
-

(2 X 0.15915) =
0.9317 inch.

The angle of face may be arbitrarily set at, say, 75 degrees, in

this case. The "trimmed diameter" is scaled from an accu-

rate drawing and proves to be 7.75 inches.

To find the distance between centers of the worm and wheel,

use Rule 15: (2.1817 + 7.1620) -T- 2 = 4.6718 inches.

To find the minimum length of threaded portion of the worm,
use Rule 17: 7.4803

- 4 X 0.15915 =
6.8437.

V74803
2

6.843 7
2 =

3 inches, approximately.
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It will be noted that the ends of the threads in Fig. 2 are

trimmed at an angle instead of being cut square down, as in Fig. i.

This gives a more finished look to the worm. It is easily done by

applying the sides of the thread tool to the blank just before

threading, or it may be done as a separate operation in preparing

the blank, which will in either case have the appearance shown

in Fig. 4. The small diameters at either end of the blank in

Fig. 4 should, in any event, be turned exactly to the bottom

diameter shown in Fig. 2, and obtained by Rule 8. This is of

great assistance to the man who threads the worm, as he knows

that the threads are sized properly as soon as he has cut down to

this diameter with the end of his thread tool. This always

requires, of course, that the thread tool is accurately made.

Formulas for the Design of Worm Gearing. For the conven-

ience of those who prefer to have their rules compressed into

formulas, they are so arranged in the table on the following

pages. The reference letters used are as follows:

P = circular pitch of wheel and linear pitch of worm;
/ = lead of worm;
n = number of teeth or threads in worm;
S = addendum, or height of worm tooth above pitch line;

d =
pitch diameter of worm;

D =
pitch diameter of worm-wheel;

o = outside diameter of worm;
= throat diameter of worm-wheel;

O' = outside diameter of worm-wheel (to sharp corners) ;

b = bottom or root diameter of worm;
N = number of teeth in worm-wheel;

W = whole depth of worm tooth;

T = width of thread tool at end;

a. = face angle of worm-wheel;

/3
= helix angle of worm and gashing angle of wheel;

U = radius of curvature of worm-wheel throat;

C = distance between centers;

x = threaded length of worm.
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in which Of = the outside diameter of worm-wheel to sharp

corners; U = the radius of the curvature of worm-wheel throat;

a = face angle of worm-wheel; O = throat diameter of worm-

wheel.

By writing this formula in the form:

it will be seen that the expression within the parentheses can be

tabulated for various face angles, and such a table is given here-

Table of Factors C Used in Worm-gear Formula
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This drawing follows, in general, the model drawings shown by
Mr. Burlingame in the August, 1906, issue of MACHINERY,
taken from the drafting-room practice of the Brown & Sharpe

Mfg. Co. In cases where the worm-wheel is to be gashed on the

milling machine before bobbing, the angle at which the cutter

is set should also be given. This is the same as the angle of worm

h i%" H

- 3ya" J

_}_

WHEEL
NUMBER OF TEETH =45
CIRCULAR PITCH=*0.500"

ANGLE OF CVT=82Q f

WORM, DOUBLE, R. H.

OUTSIDE DIAM. OF WORM= 2.500"

Machinery

Fig. 5. Model Drawing of Worm and Worm-wheel

tooth found by Rule 9. In cases where the wheel is to be hobbed

directly from the solid by a positively geared nobbing machine,
this information is not needed. It might be added that it is

impracticable with worm-wheels having less than 16 or 18 teeth

to gash the wheel, and then hob it when running freely on centers,

if the throat diameter has been determined by Rule n.



CHAPTER VII

ALLOWABLE LOAD AND EFFICIENCY OF WORM GEARING

WHEN called upon to design a set of worm gearing for a cer-

tain drive, or select one from the catalogue of a manufacturer,

the designer will find very little definite information in the

ordinary textbooks on machine design concerning the allowable

load, the allowable speed and the efficiency which may be ex-

pected the very points which are of vital interest to him.

The following paragraphs discuss these subjects.

Relation of Load to Effort In the following formulas let

P =
pressure of the worm-wheel on the worm parallel to

the worm-shaft;

F = force which must be applied at the pitch radius of the

worm at right angles to the worm-shaft to overcome

P\
a. angle of thread with a line at right angles to the axis

of the worm;

/ = coefficient of friction;

/ = lead of worm thread;

d =
pitch diameter of worm.

The normal pressure between worm and wheel then equals

F X sin a + P X cos a, and the friction / (F X sin a + P X
COS a).

Now, if the worm is revolved once, we obtain the following

relation between F and P:

FXird = PI +f(F X sin a + P X cos a)
cos a

As :
= tan a. the formula above may be written:

ird

170
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This relation, giving the force F which must be applied at the

pitch radius of the worm to overcome the load P at the pitch

radius of the worm-gear, is often required by the designer.

Efficiency. If there were no friction, or if / equalled 0, we

would have :

Fi = P tan a.

f
,

The efficiency of the worm gearing, is, therefore:

,., FI tan(i -/tana)=
F

=

/+tan

Equations (i) and (2) are, strictly speaking, only correct

for worm threads with vertical sides, but the sloping thread side

commonly used affects the result but little.

10 20 30 40 50 GO 70

ANGLE OF WORM THREAD,DEGREES
80 90

MacMnery,N.Y.

Fig. i. Relation between Worm Thread Angle and Efficiency

To demonstrate the influence of the thread angle on the

efficiency, the curve represented by Equation (2) with a and E
as variables, and for a certain assumed value of /, has been

plotted in Fig. i. This curve is reproduced from "Worm and

Spiral Gearing," by F. A. Halsey. It shows that the efficiency

increases very rapidly with the thread angle for small angles,

while for angles near the maximum efficiency, there is very little

drop for a wide range of angles. It is, therefore, essential, for

high efficiency, not to use thread angles that are too small. The

value of/ is found by experiments to vary with the speed of the

rubbing surfaces. (See Transactions of the American Society
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of Mechanical Engineers, Vol. 7, page 273.) For values of /
for various speeds see table, "Safe Load on Worm-gear Teeth."

Allowable Load. It would seem reasonable to assume the

allowable pressure on gear teeth under otherwise equal conditions

to be expressed by

(3)

where p =
pitch, b = width of gear teeth, and C = a constant

for the given speed.

For very slow speed, where there is no danger of overheating,

and where the only questions to be taken into account are the

strength and the resistance to abrasion, the above equation is

Relation Between Velocity at Pitch Line, Angle of Thread and Efficiency
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correct in this case also. This equation is given in "Des Ingen-

ieurs Taschenbuch" (Hutte).

German Experiments to Determine Speed Factor. The

value of the factor C varies with the speed and must be deter-

mined by experiment. The most complete experiments to this

effect are those of C. Bach and E. Roser, published in Zeit-

schrift des Vereines Deutscher Ingenieure, Feb. 14, 1903. These

experiments were made with a three-threaded steel worm, not

hardened; 76.6 millimeters (3 inches) pitch diameter; 25.4 milli-

meters (i inch) pitch; 17 degrees 34 minutes, thread angle;

148 millimeters (5^! inches) long. The worm-wheel was of

bronze, 242.6 millimeters (g^g inches) pitch diameter, with

'0.260.780.41 2.77 5.40

SLIDING VELOCITY IN METERS PER SECOND

MEASURED AT THE PITCH CIRCLE OF THE WORM

70 C.

50 C.

8.61 METERS

Machinery,N. Y.

Fig. 2. Relation between Tangential Pressure and Velocity

milled teeth, 78 millimeters ($$ inches) wide measured on the

arc, 30 teeth, speed ratio i to 10, with ball bearings for worm

shaft, and oil bath of extremely viscous oil.

In the experiments the load on the teeth varied from in kil-

ograms (244 pounds) to 1257 kilograms (2765 pounds) and the

speed varied from 2185 R.P.M. to 64 R.P.M. The temperature
of the oil bath and that of the surrounding air was observed until

the difference reached a constant value. Corresponding values

of load and speed for constant temperature difference were ascer-
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tained and an attempt to express the relation by an equation

gave the following rather lengthy expression:

P = Cpb =
[a(ta -te)+d]pb (4)

in which

o.o66c

V
a = + 0.4192;

d 109.1

+ 2-75

-
24.92;

t = temperature of oil in degrees C.
;

te
= temperature of air in degrees C.

;

V =
sliding velocity at pitch line in meters per second.

Safe Load on Worm-gear Teeth

Load per unit of the product (pitch X width of tooth), for go-degree F.

temperature difference between oil and surrounding air. More than 1000

pounds per unit of product (pitch X width of tooth) should not be allowed
under ordinary circumstances. Cut bronze-gear, cut steel-worm.

Velocity in

Feet per
Minute
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load used with discretion, and with due consideration for the

various individual conditions associated with the drive in con-

templation, may be made the basis for worm-gear design in

average cases and where a temperature rise of 90 degrees F.

(50 degrees C.) is allowable. The loads given are for continu-

ous service, and as it will take several minutes, perhaps hours,

before the constant temperature is reached, a higher load will

be justified for intermittent service, where the oil has time to

cool down. It should be kept in mind that the danger of

abrasion will, of course, depend on the temperature of the oil,

and not on the temperature difference; if, therefore, the gear-

ing is installed in a place where the surrounding temperature
is kept low, the temperature difference can be correspondingly

increased and vice versa. The danger of abrasion will also, to

a large extent, depend on the character of the lubricant, in that

a very viscous oil will offer greater resistance to the squeezing

out of the oil film between the rubbing surfaces than the less

viscous.

Practical Points in the Design of Worm and Gear. It should

be remembered also that a gear with many teeth gives a better

contact with the worm both on account of the flatter curve of

the engaging segment and the larger average radii of curvature

of its teeth. This has particular reference to the heavy loads at

slow speed, where the question of temperature does not enter.

The angle of thread (the helix angle) does not appear in the

formula given, as it has no direct bearing on the question of

allowable load and speed of rubbing surfaces. As previously

mentioned, the angle of thread has, however, a direct influence

on the efficiency of the gearing. Given, for instance, two worms
of the same diameter, one having a thread angle twice as great

as the other, carrying the same load on the gear teeth and run-

ning at the same speed, there is no reason at all why one should

be more successful than the other as far as wearing qualities

are concerned, but it must be remembered that the first one is

transmitting twice the horsepower of the other, and will obvi-

ously give much better efficiency.

With the allowable load decreasing as the speed increases, as
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provided for by the formula and table given, a speed of rubbing
surfaces as high as 1000 feet per minute, or even higher, can

undoubtedly be used with success for cut gearing, which also has

been demonstrated repeatedly in practice. In the tests by
Bach and Roser, the speed was carried as high as 8.76 meters

per second (1724 feet per minute), with a load of 370 kilograms

(814 pounds) and a temperature difference of 80.5 degrees C.

(126.9 degrees F.) with no apparent cutting. The loads given

represent tangential loads at right angles to the worm-gear shaft.

The actual pressure between the rubbing surfaces will be more, and

will increase with the angle of thread, but the increase for gears

in common use (less than 2o-degree thread angle) is not very great.

Concerning the coefficient of friction /, this has not been de-

duced for higher speeds than 80 feet per minute, but it will be

seen that there is a general tendency for the value of/ to decrease

as the speed increases.

Except for hand-operated gearing, or for machinery which is

only operated occasionally and for a very short time, the worm
and gear should be enclosed in an oil casing and the worm always

placed below the gear to insure the submersion of the rubbing
surfaces in oil. Except in the cases mentioned, machine-cut

worms and wheels should always be used. Hardened steel

worms working with bronze wheels have proved to give good

satisfaction, because this combination wears longer than cast

iron or steel and cast iron.

Self-locking Worm Gearing. A set of worm gearing will be

self-locking when the thread angle is equal to, or smaller than,

the angle of friction. From Equation (2) we obtain, by making

/ = tan a, the efficiency of worm gearing having a thread angle

just small enough to be self-locking, as follows:

tan a (i tan2 a -, , , *

(5)

Equation (5) gives a maximum of EI for tan a = o or a =
o,

and this value is E\ max. =
\.

From this it will be seen that it is impossible to obtain an

efficiency greater than 0.5 if the gears are to be self-locking in
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themselves. Of course, there will always be some friction in

the worm-shaft bearings and other parts of the machinery which

may prevent the pressure on the worm-gear from actually turn-

ing the machinery as a whole backwards, even if the angle of

thread is larger than that of friction. This, in connection with

the fact that the efficiency for backward movement is low, is

probably the reason why many worm-gear drives, applied as

self-locking, have angles of thread far in excess of the friction

angle, and still seem to work satisfactorily.

On account of the variable coefficient of friction, the angle of

thread which may safely be used for self-locking gears will also

depend largely on the speed with which the machine is run back-

ward, or, in other words, the speed with which the load is lowered

or eased off by means of the worm-gear. If the machine is never

run but one way, and the worm-gear applied as safety device to

prevent backward movement in case of accident, then the load

would have to start the worm shaft rotating, and a larger angle of

thread could undoubtedly be used. The subject of self-locking

worm gearing will be treated in greater detail in a following chapter.
An Example from Practice. To indicate the use of the form-

ulas and table in practical work, the following example has been

prepared: Assume a set of worm gearing used for driving a

package elevator with the worm-gear shaft running at a speed
of 5 R.P.M. The required turning moment is 42,000 inch-

pounds. It is desired to have the worm gearing self-locking to

prevent the elevator from running backward in case the driving

belt breaks or jumps off.

As the elevator must come to a stop before it can commence

to run backward it is only necessary to have a thread angle equal
to or smaller than the angle of friction for rest. Assuming the

coefficient of friction to be at least 0.15 at rest, the thread angle

a will be determined by tana =
0.15, or a. = 8| degrees. If

the speed of the worm shaft is not dependent on other conditions,

we have a choice between a single- and a double-threaded worm.

A single-threaded worm of if inch pitch would have a diameter

= * =
3.71 inches. This may not be enough to allow for
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a worm shaft of sufficient strength; besides it would give a very
narrow face to the worm-gear. We, therefore, probably prefer

to use a double-threaded worm, the pitch diameter of which

i- X 2
will be =

7.42 inches. The face of the worm-gear will

then be

f X 7.42
=

4-95 inches, or, say, 5 inches.

Assuming a worm-gear of 28 inches pitch diameter, if inch

pitch, and 50 teeth, the worm shaft will be running 5 X -/-
=

125 R.P.M., which gives a speed of rubbing of n -. ,

*
12 X cos8f deg.

= 247 feet per minute.

Referring to the table, "Safe Load on Worm-gear Teeth,"
we find for a speed of 250 feet per minute an allowable load of

371 pounds per unit of product (pitch X width of tooth). The

total allowable load in this case will be37iXi|X5= 3246

pounds. This load at 14 inches radius gives a turning moment
of 14 X 3246 = 45,444 inch-pounds, while only 42,000 inch-

pounds is required.

If the above machine were applied for lowering packages in-

stead of elevating same, as previously assumed, the gearing would

have to lock while running at a full speed of 247 feet per minute,

at which speed we would not have a friction coefficient of more

than 0.05, at the most, which would correspond to an angle of

thread determined by tan /3
=

0.05, or = 2 degrees 50 minutes

approximately, and the gear with a thread angle of 8| degrees

could not be expected to lock.

To find the efficiency of the above gearing when running at

full speed, assume a coefficient of friction of 0.05, and apply
Formula (2) which gives

tana (i /tana) 0.15(10.05X0.15)E = - ^ J = " -^ = 74 per cent.

/ + tana 0.05 + 0.15

This is the efficiency of the worm gearing only and does not

allow for the friction loss in the worm-gear shaft nor any fric-

tional loss in the other parts of the machine.

To find the effort F which must be exerted at the pitch radius
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of the worm to turn the worm shaft with a load =
OOO

--
14

= 3000

pounds, at the worm-gear periphery, apply Formula (i) which

gives (for/ = 0.15 at starting):

P= P X = 3000 X 921 pounds.
i /tana 10.15X0.15

To this should be added the friction in the worm-shaft bearings

reduced to the same radius.

Theoretical Efficiency of Worm Gearing Oerlikon Experi-

ments. The following table gives the theoretical efficiency of

worm gearing for a number of different coefficients of friction.

Practical experiments carried out by the Oerlikon Company,
Oerlikon by Zurich, Switzerland, agree closely with the results

from theoretical calculations given in the table. These experi-

ments indicate that the efficiency increases with the angle of

Table Giving Theoretical Efficiency of Worm Gearing

Coefficient of

Friction
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thrust. To obtain the best results, there must be very careful

choice of dimensions of teeth, of the stress between them, and

the angle of inclination. To show what can be done, the follow-

ing are the results of a test with an Oerlikon worm-gear for a

colliery winding engine: The motor gave 30 brake horsepower

to 40 brake horsepower at 780 revolutions. The normal load

was 25 brake horsepower, but at starting it could develop 40

brake horsepower. The worm-gear ratio was 13.6 to i, the

helicoidal bronze wheel having 68 teeth on a pitch circle of 7.283

inches, and the worm 5 threads. The power required at no load

for the whole mechanism was 520 watts, corresponding to 2.8

per cent of the normal. The efficiency at one-third normal load

gave 90 per cent, at full load 94^, and at 50 per cent overload

93 per cent. The efficiency of the worm and wheel alone is higher,

and, knowing the no-load power, is calculated to be 97! per cent.

According to the table given, of theoretical efficiencies, this gives

the coefficient of friction as o.oi. To obtain a reduction of 13.6

to i with spur gears would have necessitated two pinions and

two wheels with their spindles and bearings, and if the bearing

friction was taken into consideration, the efficiency of such gear-

ing would certainly not have reached the above-mentioned figure

of 94^ per cent at full load. These figures, of course, seem very

high for the efficiency of worm gearing. They were published

in MACHINERY, December, 1903, having been obtained from a

reliable source, and were never challenged. They have also been

published in several editions of MACHINERY'S Reference Book

No. i, "Worm Gearing," without adverse criticism.

Worm and Helical Gears as Applied to Automobile Rear-

axle Drives. European practice extending over a period of

fifteen years has given ample evidence of the eminent success of

the worm and helical type of gearing, and in a paper read before

the Society of Automobile Engineers, Mr. F. Burgess, the well-

known gear expert, stated that he felt confident in saying that

in the near future a large percentage of the cars in the United

States will be equipped with this drive. The principal reason

for the adoption of the helical form of tooth appears to be its

peculiar quality of silence, regardless of speed or load. With
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the best methods of design and assembly, great durability,

strength and efficiency are obtained.

The successful worm-gear should embody the following quali-

fications :

1. Cheapness of construction.

2. Strength for resisting shocks.

3. Hardened and smooth surfaces for durability.

4. Material of a suitable composition to reduce friction.

5. Simplicity of construction and mounting.
6. Perfect bearing conditions.

7. Noiselessness at any speed or load.

8. Reversibility.

9. Lightness in weight.

10. High efficiency in power transmission.

Granting that there is some argument against the worm in

regard to trucks as to the dead axle proposition, this could be

overcome by using a worm-gear on each end of the axle, the

Results of Efficiency Tests on Ordinary Type Worm-gear for Auto-

mobile Rear-axle Drive for Electric Vehicles and Light-

power Cars
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Considerable discussion has arisen in regard to the relative

merits of the straight and Hindley types of worm gearing. Both

can be used successfully, although each has its own advantages
and disadvantages. For most purposes, particularly where con-

siderable power is to be transmitted, the Hindley type has the

advantage, but with ordinary machinery it is somewhat more

difficult to obtain the same degree of accuracy as can be obtained

in the case of the straight type.

From tests made there is no question but that there is a larger

bearing surface on the Hindley type of worm than on the straight.

Therefore this type of gear-

ing will for the same pitch

present a bearing of greater

durability, and heat less than

the straight type, particular-

ly under heavy load. The

straight type may have less

trouble with end-thrust bear-

ings. The worm can move
in its position longitudinally

with the worm axis and

therefore does not require as

close an adjustment of the

end-thrust bearings. With

first-class bearings the Hind-

ley type has the advantage, as

a smaller and lighter gear can be used, thus reducing the expense.
Some efficiency tests on an ordinary type worm and worm-

gear for automobile rear-axle drive, for electrical vehicles and

light-power cars, were undertaken by Mr. Burgess. A trans-

mission dynamometer, similar in some respects to the apparatus
used at the Massachusetts Institute of Technology by Professor

Riley, was constructed. The prony brake was adopted for an

absorption dynamometer, and a long shaft of small diameter

was arranged to obtain the torsion of the shaft in degrees by an

electrical indicator apparatus for a transmission dynamometer.
The results of the tests are given in the accompanying table.
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The diagram, Fig. 3, gives a curve plotted from the results ob-

tained in the tests and recorded in the table.

Worm Gearing Employed for Freight Elevators. In general

the worm should be made just as small as the circumstances will

allow in order to increase the angle of thread and thereby the

efficiency, while maintaining the same pitch and the same num-

ber of threads on the worm.

There are three factors which may determine the minimum
size of worm that can be used, which are as follows: First, the

diameter of the shaft on which the worm has to be keyed, if not

made in one piece with this shaft, limits the size of the worm.

Second, if the gear is to be self-locking the angle of the thread

cannot be increased above a certain degree; with the pitch

settled on, this will determine the diameter of the worm, provided

it is single threaded. Third, if the face of the gear is determined,

it is not desirable to go below a certain diameter of worm on

account of the consequent large face angle.

Factors Determining the Load. Concerning the load which

can safely be carried on worm gearing, it is determined by one

of three considerations, which are: the strength of the material,

the danger of abrasion and the danger of overheating.

The first consideration seldom comes into play because a gear

proportioned to prevent abrasion and excessive heating will

generally have excessive strength. For very slow-running

worms and for worms used intermittently with short runs and

long intervals, the heating effect does not enter and the deter-

mining factor will be the danger of abrasion from too high a

pressure per unit of contact surface. The contact between

worm and worm-gear is mathematically a line, but the physical

properties of the opposed surfaces and the lubricant between

them expand this ideal line into an actual area, and as the radii

of curvature increase directly with the pitch, it is natural to con-

sider this surface as directly proportional to the product of pitch

and face. The proper allowable load per unit must necessarily

be determined by experience, and 1000 pounds to 1200 pounds
seems to be about the safe limit of load per unit of p X / (pitch

X face) considering that there ought to be here, as well as in all
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other designs, a certain margin or factor of safety, as we might

say, to prevent having the machine put out of commission by
an occasional overload or other accidental excessive pressure. If

all the load, as is usual for spur gears, is considered to be taken

by one tooth, the stresses produced in the material for these

loads are about the safe stresses for cast iron.

Overheating. The third consideration, the danger of over-

heating, is perhaps the most important, and the most trouble

with worm gearing is from this source. When more heat is

developed than is carried off from the gear housing, the temper-

ature of the oil will increase, but with the higher temperature

the oil becomes less viscous and its adhesion to the rubbing sur-

faces becomes less. The coefficient of friction increases with con-

sequent more rapid increase in temperature. Thus the critical

conditions are constantly augmented by one another until the

oil film between the surfaces is squeezed out altogether and

abrasion occurs. The only safe way to avoid this is, of course,

to so design the gearing that the temperature is kept below a

certain limit. For continuous service the proper loads may
be based on Bach's and Roser's experiments referred to in the

preceding sections of this chapter. It may be well here to call

attention to the fact that the loss of heat from a body is approxi-

mately directly proportional to its surface, and consequently a

large gear housing is at an advantage. The housing should

have stuffing-boxes for the worm shaft, and be well filled with a

viscous oil so that the heat created at the point of contact may
be distributed quickly to the upper parts of the housing.

Special Application to Freight Elevators. For intermittent

duty, like that imposed on a freight elevator, the question of

allowable load becomes more complicated. The load that can

safely be carried on a gear for this class of work will depend en-

tirely on the circumstances, and a value can only be arrived at

if these are known, or after certain assumptions as to the maxi-

mum time of continuous service, time of intervals, etc., have been

made. The total heat developed can then be compared to that

for continuous service and a correspondingly higher load allowed.

Consider, for instance, a worm for driving a freight elevator
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with a load on a 24-inch drum of 4000 pounds, worm direct on

motor shaft running at 850 R.P.M. If, in this instance, it is con-

sidered safe to assume that the maximum average load for a

certain unit of time will never exceed 2000 pounds and the time

required for loading and unloading the elevator is at least equal

to the time of actual running, then the work performed by the

worm gearing will be one-fourth of that for continuous service

with full load, assuming the coefficient of friction the same for

all loads. The heat developed will also be one-fourth of that

developed with full load. A gearing designed for continuous

service with 1000 pounds load on drum will therefore meet the

requirements.

For a worm of 3! inches in diameter running at 850 R.P.M.
,

we have a velocity of 824 feet per minute. For this velocity a

load per unit of pitch times face of 180 pounds is allowable for

a difference in temperature of 50 degrees F. The gear will have

to have 108 teeth to give the necessary reduction to 50 feet

per minute elevating. As this number of teeth is exceptionally

large, we can expect a good contact with less danger of abrasion,

and a higher temperature difference, say, 70 degrees, is warranted.

The allowable load is approximately proportional to the temper-
ature difference, and we can, therefore, allow 180 X f--

= 252

pounds per unit of pitch times face. On account of the large

diameter of the worm-gear, the worm and its housings will be

comparatively long with consequent large radiating surface, and

a temperature difference of 70 degrees will probably not be

reached at all.

A worm, 4 inches in diameter, i inch pitch, with gear 34.4

inches in diameter, i\ inches face, will then carry 252 X i X 2f =

693 pounds, which corresponds to a load on the drum = 693 X

= 993 pounds, or practically 1000 pounds. The inter-
24

mittent load on gears will be 4000 X = 2791 pounds, or
34-4

1015 pounds per (p X /), which in this case is within the limit.

Frequently Employed Objectionable Designs. Many worm-

gearing designs used on freight elevators employ too high a load
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on the gear teeth. In one case a worm-gear having 108 teeth,

| inch pitch, 2^ inches face and a worm 5T
3
g inches in diameter,

single threaded, was used. The worm was direct-connected to

an electric motor running at 850 revolutions per minute. Diffi-

culties were experienced with regard to the heating of the worm.
The current required by the motor was also too great. The

winding drum was 24 inches in diameter and the load on the drum

4000 pounds, which corresponds to 3720 pounds on the worm-

gear teeth.

With the dimensions given, the angle of thread is 2 degrees

39 minutes, and the efficiency of the worm-gearing for a coeffi-

cient of friction equal to 0.05 would be 0.48 (see preceding sec-

tions of this chapter). If the diameter of the worm were reduced

to 3} inches, the angle of the thread would be increased to 3 de-

grees 39 minutes and the efficiency to 0.58, an increase in efficiency

of 21 per cent. It will be seen from this that a decrease in worm
diameter not only reduces the speed of the rubbing surfaces, but

also increases the efficiency.

A load on the gear teeth of 3720 pounds for a f-inch pitch,

2^-inch face gear, corresponds to a load per unit of p X / equal
to 1984 pounds. This is without question too heavy a load,

even for intermittent service, and worm gearing with any such

load, running at high speed, is likely to give trouble. Upon being-

advised that the gears, as described, were too small for the ser-

vice required of them, the manufacturers of the gearing stated

that they were building elevators in competition with other con-

cerns and that a material increase in these gears would make it

impossible for them to compete successfully. They also stated

that they had sometimes operated a load of 6000 pounds with a

lohorsepower motor, but in one or two cases they had found it

very difficult to start the elevator except by using a heavy current.

Now 6000 pounds at 50 feet per minute represents
-^^-

=
9.1 H.P. The efficiency of a worm-gear with an angle of

thread 2 degrees 40 minutes was found above to be 0.48 for a

coefficient of friction of 0.05. This is the efficiency of the worm

gearing itself and does not allow for friction in gear or worm-
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shaft bearings, for end-thrust bearing, for bending of cables or

friction in guides. When all this is taken into consideration the

horsepower required for running conditions will be at least 22.

The horsepower for starting will be still higher and a correspond-

Horsepower Transmitted by Worm Gearing, Single-threaded Worm

(Gear: Phosphor-bronze; Worm: Hardened Steel)
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to stick while the salt will so glaze the worm and gear that they
will run smoothly without any tendency to "score." In ex-

treme cases, where the worm-gear runs hot, owing to continuous

and fast running and to friction, it is sometimes advisable

to add to the above ^ pound of graphite. The lubricating and

Horsepower Transmitted by Worm Gearing, Double-threaded Worm
(Gear: Phosphor-bronze; Worm: Hardened Steel)
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drives to keep the diameter of worm .as small as possible. The

tables, therefore, give the diameter of the largest allowable pitch
diameter of the worm. It is not advisable to make the worm

larger, as the gearing may then run hot and start to cut, but there

is no objection to making the pitch diameter smaller, if the
>^_____, i

,
- '

.1

^"""^ *

Horsepower Transmitted by Worm Gearing, Triple-threaded Worm
(Gear: Phosphor-bronze; Worm: Hardened Steel)
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In the case of unfinished teeth, the pitch diameter of the worm
should be only 0.8 times that given in the tables.

The best material for worm gearing is hard phosphor-bronze
for the worm-wheel and hardened steel for the worm. The
next best materials are cast iron for the worm-wheel and hard-

ened steel pr cast iron for the worm. Steel or steel castings for

Horsepower Transmitted by Worm Gearing, Quadruple-threaded Worm
(Gear: Phosphor-bronze; Worm: Hardened Steel)



CHAPTER VIII

THE DESIGN OF SELF-LOCKING WORM-GEARS

THE old opinion that the friction and wear of worm-gears are

necessarily very great, and that the efficiency is necessarily very

low, making worm gearing an unmechanical contrivance, is not

as frequently met with now as formerly. Unwin states that in

well-fitted worm gearing, of speed ratios not exceeding 60 or 80

to i, motion will be transmitted backwards from the wheel to the

worm. In Prof. Forrest R. Jones' work on machine design may
be found tabulated the results of many examples from practice,

some of which show an efficiency as high as 74 per cent before

abrasion began, the most notable example being that of a worm

running at a surface speed of 306 feet per minute under a load of

5558 pounds, and showing an efficiency of 67 per cent, with no

abrasion. The tables in Professor Jones' work show that under

light loads very high surface or rubbing speeds are allowable,

running as high as 800 feet per minute. It has also been pointed
out that an increase in the thread angle, in general, increases the

efficiency.

There is, however, an important function of worm gearing

which is not, as a rule, brought out adequately by writers on

worm gearing, and which in certain classes of machinery is of

the first importance, often, indeed, becoming the deter-

mining factor in deciding upon the choice of a worm-gear
as the power transmitter. It is the property a worm-gear

possesses, under certain conditions dependent upon its de-

sign, of being self-locking, and preventing motion back-

wards.

An instance where this property becomes of prime importance
and accounts for the use of the worm-gear is in crane work, where

the winding drum is driven by a worm-gear so designed that,

when the power is shut off, the gear will not run down or back-

191
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wards under the impulse of the load, but will be self-locking,

holding the load at any point.

Fig. i shows a single-thread worm in mesh with the worm-

wheel, a being the angle of the worm thread with the axis of the

worm-wheel, and in order that the system may be self-locking,

that is, that the worm-wheel may be unable to run the worm,
the tangent of the angle a must be less than the coefficient of

friction between the teeth of the worm and wheel, or as

tana =
., so j<f (i)

ird ird

in which p = the pitch; d = the pitch diameter of the worm;
and / = the coefficient of friction between the worm and wheel.

Machinery

Fig. i. Single-threaded Worm in Mesh with Worm-wheel, used to
Illustrate the Principle of Self-locking Worm Gearing

It is necessary to assume a value for/, which, if the condition of

determining the use of the worm-gear is its self-locking property,
should be assumed conservatively low. Unwin states under the

authority of Professor Briggs that a well-fitted worm-gear will

exhibit a lower coefficient of friction than any other kind of

running machinery. Professor Jones gives a series of values for

the coefficient of friction of screw gears, one of which is a pinion
of 4 inches pitch diameter, the average value being / =

0.05,

corresponding to a rubbing velocity of 250 feet per minute.

Mr. Halsey assumes/ =
0.05, and Mr. Wilfred Lewis says that

when the worm-gear is worked up to the limit of its safe strength,
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a rubbing velocity greater than 200 to 300 feet per minute will

prove bad practice. It is in heavy machinery where worm-

gears are mostly used as self-locking transmission elements, and

here they are usually worked up to the safe strength of the

wheel; hence it is fair to assume/ =
0.05 when designing a self-

locking worm-gear, and to limit the rubbing velocity to 200 feet

per minute, and we have for the limiting value of p at which

the system will be self-locking:

p =
0.05 ird = 0.157 d (2)

The sliding velocity in feet per minute at the pitch line is ex-

pressed by
T . TT dn , NV= = 0.262 dn (3)

where d = the pitch diameter of the worm, and n = the number
of revolutions per minute of the worm.

Under the above assumption, that for continuous service and

heavy pressures the sliding velocity should not be more than 200

feet per minute, we have as the limiting value of d to avoid all

cutting:

d _
200

0.262 n

The exact nature of the surface of contact between a worm
and wheel is involved in doubt; many claim it is only a point;

it certainly is not large, and consequently a wide face for the

wheel is not needed.

If the angle <zi is made 60 or 75 degrees, it will make the face

satisfactory for any ordinary worm of from 4 to 6 inches in diam-

eter.

There is in all worm gearing a very heavy end-thrust on the

worm-shaft, and also an outward force normal to the worm-axis,

each of which must be suitably provided for in the design of the

shaft and bearings. The end-thrust may be taken by bronze

washers slipped into the bearings at the end of the shaft, which

may be removed when worn and replaced with new ones. Shoul-

ders may be provided on the shaft, between which and the bear-

ings bronze collars may be placed, these being split to enable new
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ones to be easily and quickly placed in position when the old

ones become worn. Roller thrust bearings are very often applied

to worms, and these as well as the bronze washers may be sup-

plied with adjusting set-screws to take up the wear, instead of

renewing the washers.

In Fig. 2 let P = the tangential force at the pitch line of the

worm, d = the pitch diameter of the worm, Q = the tangential

force at the pitch line of the worm-wheel, E = the end-thrust of

Machinery

Figs. 2 and 3. Diagrams for the Derivation of Formulas

the worm-shaft, and F = the force on the worm-shaft normal

to the worm-axis; then, friction being neglected:

(4)

In Fig. 3 draw line EC parallel to the axis, or coinciding with

the pitch line, of the worm
;

let this line represent the force E =

Q\ draw AB normal to this line; it will then also be normal to

the axis of the worm
; then, when measured to the same scale to

which BC is drawn, AB = F; if the angle CAB is 75! degrees,

we have:

- = tan 14^ degrees

F =
0.250 Q

(5)

(6)

Taking friction into consideration, the force PI, tangential to

the pitch line of the worm, which it is necessary to employ in
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order to produce a force Q tangential to the pitch line of the

wheel, is given by Weisbach as

(7)
A

ftj

in which

The efficiency of the worm and wheel is then

Example. A single-thread worm of i-inch pitch, running
80 revolutions per minute, is to transmit to a worm-wheel a

tangential force Q = 5000 pounds, and is to be self-locking.

From (3)

200d<
0.262 X 80

or d may be as large as 9.5 inches before abrasion need be feared.

From (2), p < 0.157 J; assume p =
0.125 d; then, as p= i

inch, d = 8 inches, or the worm will require to be 8 inches pitch

diameter in order that the angularity of the thread may be small

enough to make the system self-locking. It will be seen that the

required diameter will be increased as the value of / is decreased,

and in case the required diameter of the worm proves too great

for practice, and the pitch cannot be reduced on account of con-

siderations of strength, some outside aid, such as a brake or

friction disk applied to the worm-shaft, will have to be

adopted.

From (7) as

7 P i
h = J~

1
= - = 0.04

ird 3.14 X 8

we have

From (4)

n 0.04 + 0.05 ,

PI = 5000--^ vx
J

. =45i pounds.
i - (0.04 X 0.05)

5000 = ^4- ,
or P = 199 pounds.



WORM GEARING

From (8)

= 44 per cent for the efficiency of the worm-gear.
Pi 45i

The formulas may, by starting with those for the efficiency, be

used to determine the pitch diameter which will give the proper
thread angle for any given pitch and degree of efficiency.

It is clear from the foregoing that a worm-gear of large pitch

will require a pitch diameter of the worm altogether too large for

practice, if it is to be self-locking, and that the system as usually

designed may be expected to run backwards. To prevent this

a friction disk may be placed in the bearing which receives the

thrust of the worm-shaft when the system is running backwards,

and the diameter of the disk so proportioned as to just hold

the worm-shaft stationary under the impulse of the worm-

wheel.

Machinery

Figs. 4 and 5. Diagrams for Determining Bearing Friction

Bearing Friction. The foregoing discussion neglects the

effect of the thrust of the worm-shaft in its bearings, the frictional

resistance of which must be added to that of the teeth to obtain

the actual conditions of a self-locking system. This frictional

resistance depends upon the values of the end-thrust E and

the normal force F already found, and the diameter and form of

the bearing. In nearly all cases of worm gearing the mounting
of the worm upon the shaft will be covered by one of three cases,

either unsymmetrically between the bearings, symmetrically

between the bearings, or overhung.
In Case i, Fig. 4, the bending moment upon the worm-shaft is

(9)
TUT
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In Case 2, same as Case i, except that the worm is central

between the bearings, and

the bending moment upon the worm-shaft is

M = 0.250 QL
4

In Case 3, Fig. 5, the bending moment upon the worm-shaft is

M = FL =
0.250 QL. (n)

In each of the above cases the shaft is subjected to a combined

twisting and bending strain, the twisting moment being the same

in each case, T = PR, which is, however, so small as to be

negligible in what follows.

In the following table the first column shows the several styles

of journals most commonly used for worm-shafts, the second

Table giving Moment of Friction with Various Types of Bearings

Style of Journal Moment of Friction
Moment of Friction

fFd*
2

0.05
0.04 Pdz

P

2fEr
3

0.05
0.2 Pr _ o.i Pdz

P P

C Ys

3 r sin y
0.05

0.2 P(r3 -rtf
pr sin y

0.05
o. 2 P(n3 -r3

)

ri
2 - r2

column gives the moment of friction for each under a load in the

direction of the arrow, the third column gives the coefficient

of friction assumed, and the fourth column gives the tangential

force P2 at the pitch line of the worm, resulting from the resist-
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ance of friction in the journals, and found by dividing the mo-

ment of friction in Column 2 by the pitch radius of the worm.

There are always acting upon the worm-shaft the two forces F
and E\ consequently to get the resultant retarding force tan-

gential to the pitch line of the worm, we must take the sum of

the resultants due to the frictional resistance of each force sepa-

rately. Referring to the table, for each worm-shaft, find the con-

ditions shown at A, in addition to the conditions shown either at

B, C or D, as the case may be, and the total resultant force PZ

at the worm pitch line will be the sum of the quantities given in

Column 4 opposite the particular cases.

Machinery

Fig. 6. Diagram for Determining the Angle of Repose Correspond-
ing to the Journal Friction

These frictional resistances developed by the journals act in a

direction helpful to the self-locking property of the worm, and

enable the designer to use a larger thread angle for a given diam-

eter of worm, or a smaller diameter of worm for a given thread

angle, thus keeping within the limits of good practice, and in-

creasing the efficiency of the system for the forward movement.

Having determined the force P2 tangential to the worm pitch

line, resulting from the frictional moment at the journals, the

angle of repose for this force acting with the force Q, as shown in

Fig. 6, is given by the equation,

P2
tan x =

The thread angle found previous to the consideration of the

effect of the journal friction may now be increased by the angle
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x
} making the thread angle a + x. This may be accomplished

either by increasing the thread angle, increasing the pitch, or

decreasing the pitch diameter.

Consider, now, that in the foregoing example, the worm-shaft

is of the form in Case 2, the worm being central between the

bearings, and the distance between bearings being 36 inches.

Then, from (5), we have:

F =
0.250 X 5000 = 1250 pounds.

From (10)

, r 0.250 X 5000 X 36 . ,M = - *- =
11,250 inch-pounds.

4

Assuming s = 10,000 pounds per square inch for the allowable

fiber stress in the worm-shaft, we have:

M = ^
3 2

or 2.28 inches.

From the table, Case A,

n 0.04 X 199 X 2.28
PI = - za =

18.15 pounds.

From the table, Case B,

o.i X 199 X 2.28 ,

Pi = - =
45-37 pounds.

Then
P2

=
18.15 + 45.37

=
63.52 pounds.

2

From (i)

tan# = = 0.0127
5000

x = o deg. 44 min.

tana 0.04
V .i4 X 8

a = 2 deg. 17 min.

Then
a + x =

3 deg. i min.

tan 3 deg. i min =
0.053

f- = 0.053
=

h, and d = 6 inches, approx.
ird
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If, now, we substitute these new values of h and d in Equations

(7) and (4), we continue as follows:

From (7)

From (4)

0-053 + -5 /: j
PI = 5000 T-**- ~

r = 5 l6 pounds.
i - (0.053 X 0.05)

'P X 3.14 X6 ,

5000 = - -
,

or P = 265 pounds.

From (8)

= ^ =
51 per cent efficiency for the worm-gear.

PI 5 l6

The total efficiency of the system, taking account of the journal

friction, will be:

P 265
7T~r^7 =

7~~>
- = 46 per cent.

Pi + P2 516 + 63.52

It thus becomes clear that while the efficiency of the worm
threads and wheel teeth has been increased above 50 per cent,

the efficiency of the whole system, including the journals, is

below 50 per cent, and the system retains its self-locking prop-

erty. It is evident that when running forward, the end-thrust

E upon the worm-shaft will be upon the opposite end from that

when running backward, and on this account a system may be

designed to have a high efficiency on the forward movement and

still preserve its self-locking property.

If both the journals have roller bearings, and the end taking

the thrust on the forward movement has a ball bearing, while

the opposite end be made like Case C or D in the table, properly

proportioned, the worm may be designed to show a very high

efficiency on the forward movement, while the frictional resist-

ance of the step bearing on the opposite end will cause the sys-

tem to be self-locking by reason of the energy absorbed at the

step bearing.

General Method of Procedure. The formulas may be put

into more convenient form for this purpose, as follows: The de-

signer will have, to start with, a knowledge of the force Q re-

quired at the worm-wheel, the force PI at the pitch line of the

worm, developed from the source of power, the pitch required
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for the worm-wheel, and the efficiency e for which he wishes to

design the system. We then have:

p =
e, and P = P\e.

"i

Substituting this value for P in Equation (4) and solving for

d, we have :

3.

for the worm, neglecting the journals, when the journals and

thrust bearings are roller and ball bearings, respectively, and

d _ PQ

3.14 (Pi
- P2) e

when the journals and thrust bearings are considered.

The worm being thus designed for the given efficiency on the

forward movement, it remains to determine such proportions of

the step bearing for the backward movement as will present

enough frictional resistance to render the system self-locking.

Let ei
= the efficiency when the journals and thrust are con-

sidered, then:

or =
r\ + "2

and substituting the value of P found above,

ePl
=

and

Pi (e
-

By equating this force P2 to the proper quantity from Column

4 in the table of journal resistances, the proportions required of

the journal or step bearing may be determined.



CHAPTER IX

THE HINDLEY WORM AND GEAR

THE Hindley type of worm-gear was first used in Hindley's

dividing engine, and was, by the inventor, considered superior

to the ordinary type, in wearing quality. Investigation has

practically settled that the nature of contact between the worm

thread and the teeth of the ordinary worm-wheel is that of

line contact, extending across the tooth on the pitch line. It

has also been fairly well proved in practical examples that the

contact is of a broader nature on account of the elasticity of the

materials used in the construction. The convex surfaces of

contact are flattened considerably under pressure and thus for

practical purposes make actual surface contact. The contact

in the ordinary worm and worm-wheel type is limited to two

teeth of the wheel and worm thread, at most.

Comparison of Ordinary and Hindley Worm Gearing. The

conditions are much different in the case of the Hindley worm,
and it is the intention in this chapter to show wherein the differ-

ence lies. As this style of gearing is not very common, a few

words regarding its construction will not be out of place. Fig. i

illustrates the Hindley worm, showing the theoretical form.

This worm is not of cylindrical shape, but is formed somewhat

like an hour-glass, after which it is sometimes named. The

worm blank, being made smaller in diameter in the middle than

at either end, conforms to the circumference of the wheel with

which it meshes. The worm thread is cut by a tool which moves

in a circular path about a center identical with the axis of the

wheel with which it is to mesh, and in the plane in which the

axis of the worm lies. The process is similar to ordinary thread

cutting in the engine lathe, except for the difference in the path
of the tool, the tool having a circular instead of a straight

path.
202
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It is evident that the worm shape is dependent on the partic-

ular wheel with which it is to run, and Hindley worms are not

interchangeable with any other but an exact duplicate. That is,

a worm cut for a Hindley gear of 50 teeth cannot be used success-

fully with a wheel of 70 teeth, although the pitch of the teeth is

exactly the same. In the ordinary type of worm gearing one

worm may be made to run with any number of diameters of

wheels of the same pitch, and bobbed with the same hob.

Machinery

Fig. i. Typical Hindley Worm

In action the two styles of worm-gear differ greatly, and both

diverge widely in action from the case of a plain nut and screw,

which may be taken to represent a worm and worm-gear, the

latter of infinite diameter and with an angle of embrace of 360

degrees. In studying the action between the thread and teeth

of the ordinary type of worm-gear, we must understand odontics,

rolling contacts and the theory of tooth gearing in general, in

order to understand the action of the ordinary worm-gear. But,

in studying the action of the Hindley type, we are concerned with

no such theories, as the action is purely sliding and devoid of

rolling contact. In the ordinary worm we have an axial pitch
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which is constant from top to root of the thread, while in the

Hindley worm we have a section in which the pitch of the thread

varies from top to bottom.

The interference in the ordinary type of worm-gear is absent

from the Hindley type, and the consequent undercutting and

weakening of the teeth, therefore, is a feature with which the

designer of the Hindley worm gearing does not have to contend.

For this reason we are not limited in the length of teeth, by inter-

ference, as in the ordinary case. This fact permits a wide lati-

tude in the choice of tooth shapes and proportions. In most

examples we will find that the depth of thread is much greater

in proportion to the thickness than in the ordinary worm-gear,

WORM

Machinery

Fig. 2. Section of Ordinary Worm and Worm-wheel on Central Plane

in which the height is limited by reason of the interference at

the top and root of the teeth.

Nature of Contact of Hindley Worm Gearing. The general

idea of the Hindley worm gearing is that there is surface contact

between the worm and gear, and that the contact is generally

over the whole number of teeth in mesh. If such were the actual

conditions, the Hindley type would surely be an ideal mechan-

ism for high velocity ratios, but that such is not the fact is the

purpose of this treatise to point out. That the contact is of a

superior nature we will not deny, nor that it is much nearer

a surface contact than exists in the ordinary worm-gear. As a

means of comparison Figs. 2 and 3 are shown. Fig. 2 shows an

axial section taken through the worm and gear of the ordinary
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type, while Fig. 3 shows a similar section through the Hindley
worm and gear. The "airy" appearance of Fig. 2 as compared
with Fig. 3 indicates a vast difference in the nature of contact,

and gives the advantage to the Hindley type, wherein is the origin

of certain false ideas in favor of the latter. These illustrations

also show peculiar differences in the action of the two types.

The absence of rolling action in Fig. 3 is the most prominent,

and it shows the similarity between this type of gear and a screw

and nut.

From an inspection of Fig. 3 we may feel sure that the contact

on the axial plane is as shown, but as to the nature of contact

in a plane either side of the middle plane we are in the dark so

GEAR
Machinery

Fig. 3. Section of Hindley Worm and Gear on Central Plane

far as the drawing illustrates. Mr. George P. Grant says con-

cerning the contact of the Hindley worm and gear: "It is com-

monly but erroneously stated that the worm (Hindley) fits and

fills its gear on the axial section. . . . It has even been stated

that the contact is between surfaces, the worm filling the whole

gear tooth. ... It is also certain that it (the contact) is on the

normal and not on the axial section, and that the Hindley hob

will not cut a tooth that will fill any section of it. The contact

may be linear on some line of no great length, but it is probably
a point contact on the normal section.

"

It is not clear what reason Mr. Grant had for saying that the

contact is normal instead of axial, because there seems to be

good reason to believe that the contact is on the axial section

since it is on this section that the teeth of the hob have a com-
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mon pitch. The teeth have not a common pitch on any section

at an angle with the axial section. For what reason would one

expect to find contact on the normal section in this case any
more than in the case of the ordinary worm? Since both styles

of worm-wheels are hobbed with a revolving hob which lies in a

plane perpendicular to the axis of the worm-wheel, the contact

could hardly be on a normal section.

Professor MacCord states that he considers the contact to be

line contact on the axial section, and he gives directions for

obtaining the exact nature of the contact and also the thread and

tooth sections. These directions, on account of the compli-
cated nature of the method, are difficult to follow. Much,
however, can be found out by simple methods. In what follows,

describing these simpler methods, the results, of course, are of an

HELIX LINE OF HINDLEY WORK

HELIX LINE OF ORDINARY WOR

Machinery

Fig. 4. Development of Ordinary Worm and Hindiey Worm Spirals
on a Plane

approximate order, but they nevertheless give a means of com-

parison and a material basis for the line of argument.

The Ideal Case Considered. It is assumed that we are ex-

amining an ideal Hindley gear in which the worm and wheel are

theoretically correct in shape and that the surfaces are perfectly

smooth and inelastic. From the nature of the worm, the helix

angle varies from mid-section to the ends, decreasing as the

thread approaches the ends of the worm. The thread is spiral

as well as helical. This change in the thread angle is caused by
the increase in diameter at the ends of the worm and by the fact

that the axial pitch of the thread decreases as it reaches the

ends. The decrease in axial pitch is due, of course, to the circular

path of the threading tool. If we take a development on a flat

surface of a line scribed in the spiral path on the worm blank,

as shown in Fig. 4, the change in the angle becomes noticeable.
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In the operation of forming the teeth of the gear, the blank is

rotated, each portion of the hob working the tooth into shape

so that it will pass the corresponding portion of the worm thread

without interference, permitting a smooth transmission of mo-

tion. If each portion has a different shape or is placed in a differ-

ent relation, the shape of a gear tooth will be a compromise
between the extremes, and this is what is actually the result, as

we shall see later.

The progressive steps of the process are shown in Fig. 5 ;
the

successive positions of one tooth are shown, beginning at the

left and ending at the right-hand position where each tooth is

Machinery

Fig. 5. Successive Steps in Shaping
the Hindley Worm

Fig. 6. Surfaces of Contact of the
Hindley Worm

given its final shape. The nature of the process is shown in Fig. 6,

the shaded portions representing the gear teeth. Here we have

a representation of the contact of the thread and teeth; it shows

that surface contact is impossible on any but the heavily shaded

portions of the teeth, it being confined to the mid-section and

the extreme end sections of the worm. Line contact is obtained

throughout the length of the worm on the axial plane. This

figure also shows that no advantage is gained in surface contact

by making the worm of greater length. The location of the con-

tacts are shown in Fig. 6, at a, s, s, s, s, a, but it must be re-

membered that they lie on opposite sides of the cutting plane.

From this it is apparent that the worm does not entirely fill the
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space between the teeth of the gear and that the contact is not

wholly a surface contact.

Let us investigate still further and see whether the conditions

are not modified by other irregularities: Fig. 7 is drawn to repre-
sent a worm and gear of the Hindley type, in mesh, the teeth of

which have no depth. As before mentioned, the peculiarity of

this type of worm is its hour-glass shape. The hob and worm

may be treated as identical in form. In the process of genera-

tion, the tooth has a pitch line curvature that changes with corre-

sponding positions in relation to the thread portion acting upon

Machinery

Fig. 7. Effect of Hour-glass Shape on Worm-wheel Contact

it. The tooth must necessarily be modified from what it should

be for any particular location in its contact with the worm
thread. It is quite clearly shown that if the tooth is to fill the

worm thread or vice versa, it must be formed in strict accordance

with the thread at that particular point. Thus if at j the tooth

fills the thread, that tooth must be formed by the thread at that

point, while the tooth at k must be formed by the thread at k.

Now, since each tooth must pass from k toj, its form must be

such that it will do so without interference. It is evident that

the radial section of the gear at k must be the same as at j.

Since the worm is largest in diameter at &, the curvature of the

tooth on the radial section is dependent on the thread at that
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point. The curvature of the tooth at k evidently is that of an

ellipse whose major axis is AA\. Now, since the thread is made

with angular sides, the hob could hardly act on the teeth of the

gear the same at all points from k to j except on the axial plane

where the relative shape of the hob thread is the same for any

position along the line of action (see Fig. 3). This is evident

from Fig. 7 at E, which point only touches at-,the mid-section

of the worm. Therefore we still have the line contact from

top to bottom of teeth on the axial plane, but the construction,

Fig. 7, shows that the surface contact s, -s, s, s, Figs. 3 and 6,

does not actually exist, but that the surface contact at the ends

of the worm remains undisturbed.

From the above we may safely conclude that the hob at j
has but little effect on the actual shape of the tooth, and that its

influence increases until k is reached. Fig. 7 also shows a good
reason why the contact may be considered axial instead of nor-

mal, by the mere fact of the differences in curvature of worm and

wheel at any point other than k. In practice the contact may
appear to be surface contact, but this, no doubt, is due to the

influence of the lubricating oil and the fact that materials of

construction are distorted to some extent in form when sub-

jected to pressure. This distortion permits the worm thread to

imbed itself into the worm-wheel teeth, somewhat broadening

the contact for the time being. The conditions as stated in the

above discussion would be met in the case of a hardened worm
and gear with surfaces finished by lapping. In practice the

worm and gear are ground together, sand and water being used

as the abrasive. This grinding wears down the roughness of the

surfaces and tends to correct irregularities in form that develop

in the hobbing process.

Objections to the Hindley Gear. The objections to the

Hindley type of worm-gear are many and are widely known.

It must be set up accurately, the alignment being made perfect.

End play is a feature that must be avoided, as any longitudinal

displacement of the worm will cause the gear to cut. These

peculiarities are the greatest drawbacks to the use of this gear,

and because of them the author believes that it will not come into
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common use, at least not so common as the worm drive of the

ordinary type. This opinion is strengthened by the fact that

we have become so much more familiar with the latter type as

to be able to design and construct drives that work satisfactorily

in every respect.

Modifications of Hindley Worm-gear Practice. Some mod-

ifications have been made in the process of manufacturing the

Hindley worm-gear. One that is probably of first importance
is that known as the

"
second cut.

" The effect of the second cut

is indicated in Fig. 8. From this illustration one would say that

the object of the second cut is to remove the points of contact.

Whether this is the reason or not, it is a fact that it does remove

WORM

Machinery

Fig. 8. Effect of the "Second Cut" on Contact

considerable of the contact from all but the mid-section of the

worm. This second cut is made by enlarging the diameter of

the circle in which the threading tool travels when cutting the

worm. It is said to have advantages that add to the wearing

quality of the drive, but just what these advantages are is not

apparent, and since the process is considered more or less a trade

secret, it is difficult to obtain authentic reasons for its use.

The limiting length of the worm is dependent on the shape of

the thread. In Fig. 8 the worm is shown with three teeth in

mesh, while Fig. 3 shows five. Fig. 3 shows a case that would

be impossible in practice on account of the undercut teeth

A which lock the worm in mesh. The side of the thread must
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fall inside the line be to permit the worm and gear to be as-

sembled.

Conclusions Regarding the Hindley Worm and Gear. The

following are the conclusions, derived from the investigation

regarding the Hindley type of gear:

1. The contact is purely sliding contact.

2. The nature of the contact is linear, closely resembling sur-

face contact.

3. Linear contact extends from the top to the root of the

tooth.

4. The contact is on the axial section.

5. The thread section fills the tooth space on the axial section

only.

6. The mid-portion of the hob has little or no effect in shaping

the teeth of the gear.

7. Surface contact exists on opposite sides of the axial plane

at the end of the worm thread and is intermittent in nature,

because the end of the thread passes out of contact with the

tooth in the revolving of the worm. This contact is on a plane

normal with the thread angle.

In practice it is usual to allow considerable back-lash between

the thread and the tooth of the worm and gear. This play tends

to counteract bad workmanship, either in construction or erec-

tion.



CHAPTER X

METHODS FOR FORMING THE TEETH OF WORM-WHEELS

To correctly classify and comprehend the various methods and

machines for cutting the teeth of worm-wheels, it is first neces-

sary to clearly define the term "worm gearing." We will con-

sider that by worm gearing we mean gearing of the type of which

a cross-section is shown at the left of Fig. i, in which the acting

face of the wheel is curved to fit the form of the worm, and in

which the whole width of the wheel face is in active working con-

tact with the worm.

The action is best understood by taking vertical sections on

the center line A-A, and other lines such as that at B-B, parallel

with the center line. Sections on lines A-A and B-B are shown

at the right of the cut. With worm gearing of standard form,

the section on line A-A shows the worm to have the profile of

an involute rack, while the teeth of the wheel show outlines

identical with those of the corresponding involute gear of the

same pitch and number of teeth, suited to engage with the rack.

In other words, the teeth of the gear are such as would be formed

by the teeth of the worm if the latter acted as a rack in a mold-

ing-generating operation. A section on line B-B shows that the

teeth of the worm have a distorted outline on planes removed

from the axial plane. If we consider these distorted teeth as

the teeth of a rack, molding their mating tooth spaces in a gear

running on the same center as the worm gear and at the same

speed, it will form the distorted wheel teeth shown for the section

on line B-B. In a word, each section of the worm parallel to

the axial section A-A is a rack section, which molds in the wheel

below it the proper teeth to mesh with it in accurate conjugate

action. The true worm-wheel, it is thus seen, must be formed

by the molding-generating process.

The same worm as that shown in Fig. i may be made to en-

212
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gage with a spiral gear of the same number of teeth as the worm-

wheel, provided the teeth are of the proper pitch and set at an

angle to agree with the helix angle of the worm. The action of

such gearing, however, does not, like that in Fig. i, take place

on all sections A-A, B-B, etc., but is confined to a point at or

near the center line A-A. The contact, in other words, is point

contact, and not line contact extending clear across the face of

the wheel. Such a combination, in fact, is not a case of worm

gearing, but a case of spiral gearing and a very poor case at

that.

SECTION ON LINE B-B
Machinery

Fig. i. Action of a True Worm-wheel

Gashing Worm-wheels by the Formed Cutter Process.

While the method of forming a true worm-wheel is thus seen to

be accurately performed only by the molding-generating process,

the accurate teeth produced by that process may be closely

approximated in many cases by the "gashing" method, which

belongs in the formed cutter classification. In this operation a

milling cutter is used having approximately the outline of a

normal section of the teeth of the worm to be used. This cutter

is of the same diameter as the worm, and is set with relation to

the axis of the work at the helix angle of the worm, as measured

on the pitch line. It is centered over the wheel, and fed into the

latter to the proper depth to form a tooth space; it is then drawn

out again, the work is indexed to the next tooth space, and the
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cutter again sunk in to depth, the operation being repeated until

the wheel is completed.

A universal milling machine is generally used for this oper-

ation. With the table set at 90 degrees, the cutter is first brought

centrally over the work arbor by adjusting the saddle on the

knee of the milling machine, and then the work is brought

centrally with the cutter arbor by adjusting the table by the

feed-screw. The work table is next swung to the helix angle of

the worm which is to be used with the wheel. Then the cutting

is proceeded with.

This gashing process gives a tooth very closely approximating

the true tooth form, when the diameter of the worm is large as

compared with the pitch, and when the worm is single-threaded,

but, for multiple-threaded worms of smaller diameter in propor-

tion to their pitch, the process is impracticable. This method

is, however, used by at least one of the best-known builders of

gear-cutting machines in forming the teeth in the index worm-

wheel. It is used under the conditions which give a very close

approximation to the true form of tooth, and is employed in this

particular case for the sake of the high degree of accuracy obtain-

able. The index wheel is divided, in cutting, by a carefully-

made and carefully-preserved master wheel. The step-by-step

gashing process allows the spacings of this superior master wheel

to be accurately reproduced in the index wheel being cut more

accurately, it is claimed, than would be possible if it were to be

reproduced by the nobbing process.

The gashing process is also used for roughing out worm-wheels

preparatory to hobbing. In a previously gashed wheel, as will

be explained later, the hobbing operation is one of extreme

simplicity, not requiring special machines or mechanisms of any

kind.

The Molding-generating Principle. As already explained,

the molding-generating principle is the only one that will accu-

rately form the teeth of worm-wheels. The principle involved is

shown in Fig. 2. The forming worm (or hob) is connected by

gearing with the worm-wheel blank to be formed, in the same

ratio as in the finished worm gearing. While the blank and the
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forming worm are rotated together in this ratio, the latter is fed

into the blank slowly, its threads forming the properly shaped

tooth in the wheel. As the worm revolves, an axial section

would give the appearance of a rack like that shown in section

A-A, of Fig., i, moving continuously and forming suitable gear

teeth in the wheel below it. Any other section, such as B-B in

Fig. i, would also act as a distorted rack, formingcorrespondingly

distorted gear teeth in that portion of the worm-wheel in the

same plane.

DRIVING PULLEY
Machinery

Fig. 2. Diagram showing the Principle of the Robbing Process for

Cutting Teeth in Worm-wheels

Of the various methods of operation, by which the molding-

generating principle can be applied, shaping or planing is, of

course, impracticable. Milling is the method generally em-

ployed. Grinding or abrasion is used to a limited extent, it

being sometimes employed in the case of "grinding in" a worm
with a wheel already roughly cut to shape. In this operation

the worm and wheel are run together in place, under considerable

pressure, the teeth of the gear being liberally supplied with oil

and emery, which act as an abrasive and form the teeth of the

gear and worm to fit each other.
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In the commonly employed milling operation, the process is

that known as "hobbing," and the milling cutter or tool used is

a "hob." The hob, barring modifications required for relief

or clearance, and allowance for regrinding, as explained in a

following chapter, is practically a replica of the worm which is

to be used, but with grooves cut in it so as to form teeth. This

hob is rotated in the proper ratio with the work, exactly as shown

in Fig. 2, and fed slowly down into it, cutting out the tooth spaces

in the wheel as it does so. When it has reached the proper depth,

the teeth are all formed to the proper shape.

Robbing Worm-wheels in the Milling Machine. The sim-

plest method of rotating the hob and the work in the proper

ratio with each other is that in which the work is first gashed,

and then finished with the hob in such a way as to be driven

by the latter, the work and the hob thus furnishing their own

driving mechanism. The worm-wheel is mounted so as to re-

volve freely on dead centers. This is the simplest method of

making correct worm-wheel teeth. It does not require special

appliances of any kind, being done in an ordinary milling machine

with a gashing cutter and a hob. Complete details of the prac-

tical operations for producing worm-wheels by gashing and hob-

bing will be given in the following chapter.

In cases where it is desired to hob worm-wheels directly from

the solid without preliminary gashing, it is necessary to provide

some special device for rotating the hob and the work in unison

as in Fig. 2. Special worm-wheel hobbing machines are made

for this purpose. One of the questions met with in this con-

nection is the figuring of the gearing to properly connect the

hob and the gear. This will be explained in the following para-

graphs.

Gearing for Worm-wheel Hobbing Machines. The manner

in which the machine is geared will depend on the assortment

of change gears with which it is provided. If there is a sufficient

variety of these, simple gearing may be employed, using an idler

on the swinging arm to connect the gear on shaft D with .gear A,

Fig. 3-

First find the revolutions of the hob for each revolution of the
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worm-wheel. This is found by dividing the number of teeth

in the wheel by the number of threads in the hob, or worm,
with which it is to run. For instance, if there are fifty teeth in

the wheel and the worm is single threaded, the number of rev-

olutions of the work to one of the hob will be 50 -r- i =
50.

DRIVING SHAFT.

MITER GEARS

. WORK SPINDLE

ELEVATION

Fig. 3. Arrangement of Gearing in Robbing Machine

This may be called the ratio of the wheel. If the worm is double

threaded, the ratio will be 50 -f- 2 =
25, and so on. With the

gear connections indicated in Fig. 3, for simple gearing, when A
has 96 teeth, the gear on shaft D must have a number of teeth

equal to 4 times the ratio; that is to say, if we have a worm-wheel

with 50 teeth, driven by a double-threaded worm, the ratio is
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25, and the number of teeth in the gear at D = 4 X 25
= 100.

If a 48-tooth gear is used at A in place of the 96-tooth gear,

the gear on D is found by multiplying the ratio by 2. If, for

instance, the number of teeth in the wheel to be cut is 135, to

mesh with a triple-threaded worm, the ratio will be 135 -5-3 =45
and the number of teeth for gear D will be 2 X 45 =

90, when A
has 48 teeth.

A wider range of ratios can be provided for with a given num-

ber of change gears if A and D are connected by compound gear-

Machinery

Fig. 4. Compound Gearing for Machine shown in Fig. 3

ing, as shown in Fig. 4, where A and C are the driving gears and

B and D the driven gears. The rule for rinding the number of

teeth for B, C and D when A has 96 teeth then becomes:

number of teeth m B X number of teeth in D
number of teeth in C

When A equals 48, this becomes:

number of teeth in B X number of teeth in D
number of teeth in C

= 4 X ratio.

= 2 X ratio.

Suppose, for instance, that we have a set of change gears

varying by 6, that is to say, the numbers run 18, 24, 30, 36, 42,

etc., from 18 to 120. Suppose the ratio of the worm-gear to be

cut is 50, and the number of teeth in gear A is 96; then we have:

number of teeth in gear B X number of teeth in gear D
number of teeth in gear C

= 4 X 50 = 200.
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By selecting a 6o-tooth gear for B, a i2o-tooth gear for D and

a 36-tooth gear for C, we have:

60 X 120

-^--4X50.
Proving the calculations of the gearing for this machine is

practically the same, whether simple or compound gearing is

used. Consider that the whole mechanism is driven from the

hob spindle; then the product of all the driven gears, divided by
the product of all the driving gears, equals the number of teeth

in the worm-wheel divided by the number of threads in the

worm or hob. An idler gear between a driving and driven gear
is not considered at all, as it has no effect on the motion other

than to reverse it. Proving the first example by this method,
we have :

.

I I 96 96 2

The number of teeth in these driving and driven gears are

given in their order from the work, through the mechanism, to

the hob. The fraction -
represents the miter gears, which are

of even ratio, but the number of teeth of which are not given.

For the last example the proof is similar. Here we have:

.

I I 36 96 96 I

The Fly-tool Method of Cutting Worm-wheels. By pro-

viding suitable driving and feeding mechanism, it is possible to

use a simple fly-cutter for forming the teeth of worm-wheels

in place of the expensive hob used in the operations previously

described. The movements required for this method will be

understood from a study of Fig. 5. Here is shown in dotted

lines a worm meshing with a worm-wheel, a portion only of the

periphery of which is seen. Such a worm, properly located with

reference to a plastic blank and rotating with it in the proper

ratio, will form accurate teeth in the latter by the molding-

generating process. Gashing this worm makes of it a cutter by
means of which the same form may be given to a blank of solid
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metal. The teeth of such a gashed hob coincide with the out-

lines of the thread of the worm.

In Fig. 5, in full lines, is shown a cutter bar with a blade T\

of the same outline as the thread of the worm and the tooth of

the corresponding hob. In order to permit this single cutting

tool to perform the function of the worm as it molds the plastic

substance, or of the hob as it cuts its shape in the metal, it must

be fed helically as the bar and work revolve, following the out-

lines of the imaginary worm from one end to the other as the

cutting progresses. Beginning at the left, for instance, the

IMAGINARY WORM, FORMING TEETH IN THE WHEEL BY THE MOLDING-GENERATING PROCESS.

CUTTER BAR WITH BLADE, T^ ,
WHICH PROGRESSIVELY FOLLOWS THE\

THREAD OF THE WORM, AND SO CUTS THE TEETH OF THE WHEEL. J\

/ /I ' i' fit /' '/ / /(W ' //

/ / // // r n V luiuL
/H//II/I //f/ffi

Machinery

Fig. 5. Diagram showing the Principle of the Fly-tool Method of

Cutting the Teeth of Worm-wheels

blade may be fed helically in the line of the thread, passing

through positions 7\ and T3 ,
until the feed finally runs out at

the extreme right.

The methods of giving this progressive helical change of posi-

tion to the fly-cutter are various. It would be possible, for

instance, to so connect the feed-screw, by which the cutter-bar is

advanced with the rotating mechanism for the bar, through

differential and change gearing, that a rotating movement due

to the axial feeding of the latter would be added to or imposed

upon the rotation due to its connection with the work, just as,
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in Fig. n, Chapter IV, the rotation due to the downward feed

of the cutter slide is combined with that due to the connection

with the cutter spindle for rotating the work. If the proper

change gears were selected so that, with the spindle- and work-

driving mechanisms stationary, the feeding forward of the cutter

bar would rotate the latter at the proper rate to give the lead of

the work, the blade would evidently follow the path of the thread

of the imaginary worm, as shown at TI and T3 in Fig. 5. Owing
to the action of the differential mechanism, it would still follow

the thread of the imaginary worm, even if the latter, with the

spindle- and work-driving mechanisms, were in motion.

Another method consists in combining in the work, also by
differential gearing, a rotation due to the revolving of the cutter

with a rotation due to the axial feed of the cutter-bar. That

this produces the same effect as the previous arrangement will

also be understood from Fig. 5.

First, let the rotation of the cutter be arrested. If the cutter-

bar with a worm mounted on it, such as shown by the dotted

lines, be now fed axially in the direction of the arrow, the positive

connections between the feed and the work spindle, through the

change gearing and the differential gearing, will cause the work

to rotate uniformly with it. If the feed is arrested after a time,

and the bar is started revolving, the imaginary worm mounted

on it will still be kept in proper mesh with the work, owing to

the change gear connections between the cutter-bar and the

work spindle, acting through the differential gearing. As pre-

viously explained, the office of the differential gearing is to com-

bine in the work the rotation due to the feeding and that due to

the rotation of the worm, in such a way that they can take place

simultaneously as well as separately; so that it will be seen that

if the connections are properly made, the worm may be fed end-

wise and revolved at the same time, always keeping in perfect

step with the work.

Now, the imaginary worm and" the fly-tool are both firmly

fixed to the cutter-bar, so that the fly-tool must always follow

the movements of the imaginary worm. Being set to coincide

with the outlines of the worm thread at the start, it must always
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coincide with those outlines, and since the worm is never out of

step with the work, the fly-tool will never be out of step either.

It will thus be seen that it will always follow the helical path
of the dotted lines in Fig. 5, in moving, for instance, from 7\ to

T3 . Revolving in the position T3 ,
T4 ,

T2 , etc., the work, as

shown in the dotted lines of T2 ,
will always be in proper relation

with the fly-tool, as it is with the imaginary worm.

STARTING POSITION OF HOB

m-
POSITION OF HOB AT END OF CUT

Machinery

Fig. 6. Diagram Illustrating Manner in which a Tapered Hob is

Presented to a Worm-wheel Blank

With this arrangement, if the change gearing connecting the

driving mechanism of the cutter-bar and the work were dis-

connected while the bar were fed through from left to right, the

rotary motion given by the" connection of the feed of the bar

with the work would shape one tooth. If, on the other hand,
the gearing connecting the feed of the bar with the rotation of

the work were disconnected while the connections between the
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drive of the bar and the work were in operation, the cutter would

partially shape each tooth of the work. By combining the two

movements in the differential gearing, the cutter perfectly forms

all the teeth.

Tapered Hob for Cutting Worm-wheels. When cutting

worm-wheels by this method, the hob, as indicated in Fig. 6,

is tapered. It is placed on the cutter spindle and fed axially

INDEX WORM TRAVERSING SCREW
Machinery

Fig. 7. Diagram of Original Form of Mechanism for Generating
Worm-wheels with Taper Hob

past the work in the same way that the fly-tools in the previous

case are fed. The combined movements cause the hob to follow

spirally in the path of the thread of the imaginary rotating worm.

The small end of the hob first commences to work, and as the

cutter spindle is fed forward, the cut is taken successively on

larger and larger diameters, until finally, when the tool has

passed clear through, the full-sized teeth at the rear end of the
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hob complete the work. The machine used is practically iden-

tical with that shown in Fig. 6, Chapter IV, it being adapted to

cutting worms by the same process. The differential mechanism
used is the same as in the illustration referred to, the axial feed

of the cutter spindle being applied to shaft M, while the rotative

movement of the cutter spindle is connected with shaft H, the

two being combined in gears /, L and N to rotate the indexing
wheel G.

The original machine for this purpose, built by Mr. Reinecker,

Chemnitz, Germany, employed a different form of combining
or differential movement. It is shown diagrammatically in

Fig. 7. In this case the tapered hob is connected by change

gearing with the worm driving the indexing wheel, as before.

The worm, however, is mounted on a slide, allowing it a con-

siderable range of axial movement. This axial movement is

controlled by a screw and nut, as shown. This screw is con-

nected by change gearing with the screw by which the taper
hob is fed. It will thus be seen that the feeding of the hob
rotates the work by shifting the index worm lengthwise, while

the rotating of the hob rotates the work through the rotation of

the index worm and worm-gear. The two movements are inde-

pendent of each other, but are combined with the same effect

as produced by the
"
jack-in-the-box" differential gearing pre-

viously described. With this arrangement the ratio of table

movement and lengthwise worm movement should be propor-
tioned in the ratio of the pitch diameters of the worm-wheel

being cut, and the index worm-wheel. The reason for abandon-

ing this construction was doubtless its limited range of move-

ment, which, though sufficient for the hobbing of worm-wheels,
was not sufficient (when applied to the universal gear-cutting

machine) for cutting spiral pinions of great helix angle.

Ordinary and Taper Hob Method of Robbing Worm-wheels

Compared. By applying the hob to the work in the method

just described, a theoretically correct and accurate worm-gear
is produced, which cannot be excelled where high pitch angles

or wide wheel faces wide in relation to the worm are con-

cerned. By such a method of production the area of contact
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between the worm and worm-wheel is as large as possible, and

provided that a good combination of materials is used, viz., a

high grade of phosphor-bronze for the worm-wheel and a good

grade of casehardening steel for the worm, this type of gearing

shows no appreciable wear under the heaviest loads after having

run for a long time. In cutting the worm-wheel in this manner,

the reverse curve AB, Fig. 8, is actually obtained in the worm-

wheel tooth. This curve conforms to the path followed by a

tooth of the worm in rotating, and in practice is considered to

give a surface contact which is impossible to obtain by hobbing

worm-wheels in the ordinary way.
The method ordinarily used in hobbing worm-wheels is to

gear up the mechanism driving the hob with that actuating the

Machinery

Fig. 8. Diagram Illustrating Reverse Curve that is produced on
Worm-wheel Teeth by Hobbing with a Tapered Hob fed Longitu-
dinally and at Right Angles to the Axis of the Worm-wheel Blank

dividing wheel which controls the indexing or rotation of the

worm-wheel, and to feed the hob radially into the worm-wheel,
both hob and blank being rotated at the same time. This ac-

tion is continued until the hob has been fed in to the correct

depth. Now in analyzing this method of cutting the worm-wheel,
it will be seen that by presenting the hob in this manner it

does not produce a tooth of a theoretically correct shape, for

the simple reason that the hob cuts away certain portions of

the tooth that are necessary to give a perfect contact with the

worm. This is due to the constant changing of the theoretical

helix angle of the hob while being fed in axially.

Instead, therefore, of producing a worm-wheel tooth that has

a reverse curve corresponding with the path through which
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the face of the worm tooth travels in rotating, this method re-

moves a certain amount of the surface of the worm-wheel tooth

that should come in contact with the worm, and, in theory, the

contact between a worm-wheel (cut in this manner) and the

worm is only at the center. The worm-wheel teeth are relieved

toward- each end and are not in contact with the teeth of the

worm, these portions of the worm-wheel teeth being removed by
the hob in forming them.

A very high degree of accuracy can be obtained by the taper

hob method of hobbing worm-wheels, owing to the fact that

the full size of the hob does not come into play until the finishing

cut is reached, so that the teeth of the hob tend to preserve their

shape indefinitely. Another point that tends to produce accu-

racy is the fact that the distance between the work arbor and the

hob spindle is at all times fixed at exactly the distance between

the axis of the worm-wheel and the worm in the finished gearing.

This is a refinement of greater importance than is usually realized,

and one that is not always looked out for in hobbing operations

in which the cutter spindle is fed in toward the work.

Efficiency of Taper-hobbed Worm Gearing. In order to

prove that worm-wheels cut by this method would work out as

satisfactorily in practice as theoretical considerations indicated,

a number of tests were made by a prominent concern manufac-

turing pleasure electric cars. In these tests it was found that

the efficiency was very high, averaging from 90 to 98 per cent.

Continual running appeared to have but very little effect on the

efficiency, and the wear was almost negligible; the only effect

that wear has on this type of gearing is to increase the backlash

between the worm and the worm-wheel teeth. It was also found

in these tests that, as far as noise was concerned, the ball bearings

used in the design did not run anywhere near as quietly as the

worm and worm-wheel, which would indicate that from this

point of view the conditions met with in this type of gearing are

almost ideal. This type of worm-gearing has also proved highly

satisfactory for reduction gearing in connection with electric

motors. A particularly good example which illustrates the

adaptability of this type of gearing to large reductions was a
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reduction gear having a ratio of 451.5 to i that showed an effi-

ciency of 80 per cent when transmitting 10 horsepower under tests

covering a considerable period of time.

Various Methods Compared. Each of the various methods

of cutting worm-wheel teeth described has, however, its field of

usefulness. Gashing, as we have seen, is applicable either to

cheap, rough-and-ready work on the one hand or,, on the other

hand, to the cutting of worm-wheels which are not required to

transmit a great amount of power, but in which the highest degree

of accuracy is required. The process of hobbing previously

gashed blanks requires the least degree of specialization in the

machinery used, the ordinary milling machine having all the

movements and adjustments required. This process is perhaps
the one followed in most shops in making worm gearing of small

size. The arrangement (such as shown in Figs. 2 and 3) in which

the work and the hob are positively geared together so that pre-

vious gashing is not required, is quicker than the last-mentioned

method, but requires special machines or attachments. The

fly-tool method requires a still more elaborate machine, but is

the least expensive of all in the matter of cutting tools. A large

hob is an exceedingly costly appliance, and raises the cost of

production to an alarming degree, particularly when but one

worm-wheel has to be cut. The use of a simple fly-cutter, which

may be ground accurately to size after hardening so that all

inaccuracies are avoided, is thus the cheapest as well as the most

accurate means of cutting a large worm-wheel. Where many
large wheels of the same size are to be cut, the taper hob method

is the most satisfactory one. Hobbing by this method is, of

course, more rapid than by the fly-tool process employed on the

same machines, though the latter is not a tedious operation by

any means, as a solidly supported and powerfully driven tool

can be given a heavy feed, taking off chips of considerable thick-

ness.

The Worm. The methods followed in cutting the other

member of this form of gearing, the worm, have already been

described in connection with the methods for cutting helical and

herringbone gears. A few general remarks may, however, be
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added. Worm-threads have an included angle between the sides

of 29 degrees, as shown by the sectional view, Fig. 9. The width

of the worm-thread tool at

the end equals the linear

pitch P of the worm (or cir-

cular pitch of the gear) mul-

tiplied by 0.31. It is difficult

to thread worms having a

large lead or "quick pitch"
Fig. 9. Dimensions of the Worm Thread Qn an ordinary Iatn6j because

the lead-screw must be geared to run several times faster than

the spindle, thus imposing excessive strains on the gearing. A
common method of overcoming this difficulty is to mount a belt

pulley on the lead-screw, beside the change gear and belt it to

TOOLS-REPRESENTING TEETH OF WHEEL

Fig. 10. Method of Cutting Hindley Worm with Rotary Cutter

having Teeth Corresponding with Those of the Wheel

the countershaft; the spindle is then driven through the change

gearing.

It is quite common practice to use a thread milling machine

for cutting worms. By means of this machine worm milling
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becomes quite an easy matter. The machines are simple in

operation and good work can be turned out cheaply and satis-

factorily. The cutter head is accurately graduated and can be

swiveled either way to the correct angle of the thread. The

headstock spindle is hollow, allowing work to pass completely

through it, and the cross-slide is provided with an automatic

stop. The machines can also be stopped automatically, at the

end of a thread, thus insuring regularity of length when cutting

Machinery

Fig. ii. Cutting the Teeth of the Hindley Worm-wheel with a Hob
Corresponding to the Worm

multiple-pitch worms. There is, of course, as is evident in all

milled spiral flutes, a tendency to leave the face of the worm-

thread cut somewhat concave. In order, therefore, to produce
the best results, one maker of worm drives finds it advisable to

rough out the worm on the thread milling machine, and leave a

grinding allowance of o.oio inch on each face of the thread.

The worm, after hardening, is then ground by a special

machine which corrects this concavity of the worm tooth and

also removes any distortion which is likely to be caused by

hardening.
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Manufacture of the Hindley Worm Gearing. Any positively

operated worm-wheel bobbing attachment or machine may be

used for cutting Hindley worm gearing. The manufacture be-

gins with the cutting of the worm, which is done as shown in

Fig. 10. The blank is mounted on the spindle of the machine

ordinarily occupied by the hob, while a large diameter disk pro-

vided with cutting tools clamped to its face is mounted in place

to represent the worm-wheel. The cutting tools mounted on

this disk each represent a tooth of the wheel, being of the same

shape and cutting on the same diameter. They are clamped to

the face of the disk in such a way that the whole arrangement

represents accurately a central section of the worm-wheel, of

which (in this particular case) only every other tooth is used.

This cutter and the worm to be cut are geared together, and

slowly fed toward each other as when hobbing worm-wheels.

The teeth, cutting deeper and deeper into the blank, finally

form it into the characteristic "hour-glass" shape of the Hindley
worm.

In cutting the wheel the process is reversed, as shown in

Fig. ii. A hob cut in the same way as the worm in Fig. 10, but

with its teeth relieved, is fed into the wheel blank and cuts the

teeth in a way exactly identical with the method followed in

hobbing worm-wheels, the only difference in the process being

the difference in the shape of the hob and in the shape of the

teeth produced.

The above paragraphs relate to the principles involved in cut-

ting Hindley worm gearing. The actual operation of hobbing
the worm and the gear is a little more complicated in practice,

as certain corrections have to be made for interference that

require cutting the worm first with a cutter head of the same

diameter as the wheel in the way we have shown, and a second

time with a head of somewhat larger diameter.



CHAPTER XI

GASHING AND ROBBING A WORM-WHEEL

IN the construction of worm gearing the distance from the

center of the worm to the center of the worm-wheel may be

fixed, or, in some cases, variations, within reasonable limits,

may be permitted. When the center distance is fixed, which

will be the condition governing the work under consideration,

the mechanic may have the opportunity of testing the accuracy
of his work by assembling the finished gear in its place, which is,

of course, desirable. We shall assume, however, that in this

case, such opportunity is not afforded.

The Gashing and Robbing Process. The worm itself

should first be accurately finished as it can be used advanta-

geously in testing the center distance when hobbing the worm-

wheel. We shall assume that this has been done, and that the

wheel blank has also been turned, and will consider the method

of hobbing the teeth in the latter in a universal milling machine.

It is first necessary to gash the blank. This operation, as already

indicated in the preceding chapter, consists of cutting teeth,

which are approximately the shape of the finished teeth, around

the periphery of the blank, by the use, preferably, of an involute

gear cutter of a number and pitch corresponding to the number

and pitch of the teeth in the wheel. If a gear cutter is not avail-

able, a plain milling cutter, the thickness of which should not

exceed three-tenths of the circular pitch, may be used. The

corners of the teeth of the cutter should be rounded, as other-

wise the fillets of the finished teeth will be partly removed.

After the gashing operation, the teeth are finished to conform to

the shape of the worm by revolving the blank in unison with a

cutter known as a hob, sinking the latter into the blank until the

teeth are cut to the required depth. As the worm which meshes

with and drives the worm-wheel is simply a short screw, it will

231
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be apparent that if the axes of the worm-wheel and worm are to

be at right angles to each other, the teeth of the wheel must be

cut at an angle to its axis in order to mesh with the threads of

the worm. The method of setting the work and obtaining this

angle will first be considered.

Setting the Work and the Machine. After the dividing head

and tail-stock have been clamped to the table and the cutter has

Machinery

Fig. i. Setting the Milling Machine for Gashing a Worm-wheel Blank

been fastened on its arbor, the table is adjusted until the point

of the center of the dividing head and the center of the cutter

lie in the same vertical plane. This may be done by moving the

carriage in or out, as the case may require, until the center of

the dividing head spindle is directly under the center of the cut-

ter. If a standard gear cutter is used, as in Fig. i, the center in

the head may be set to coincide with a center line on the cutter

which is placed there by the makers to facilitate setting the
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cutter central with the work spindle. If a plain cutter is used

(which will be without the center line), a convenient method of

setting it is to place an arbor on the head and tail centers; then

with the blade of a centering square projecting upward, adjust

the carriage until the side of the cutter has a full contact with

the central edge of the blade. A second adjustment of the car-

riage, equal to one-half the thickness of the cutter, will locate

the latter central with the dividing head. When the table is

set it should be securely clamped to the knee slide.

x.

Machinery

Fig. 2. Gashing the Worm-wheel Blank

The blank to be gashed is now pressed on a true-running arbor

which is mounted between the centers of the dividing head and

tail-stock as illustrated in Fig. 2, and the driving dog is secured,

to prevent any vibration of the work. The table is now moved

longitudinally until a point midway between the sides of the

blank is directly beneath the center of the cutter arbor. To
set the blank, place a square blade against it on first one side and

then the other and adjust the table until the distances between
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the blade and arbor, on each side, are equal. Of course, if the

diameter of the arbor were greater than the width of the blank,

the measurements would be taken between the latter and the

square blade.

Setting the Table of the Machine. The table should now be

set to the proper angle for gashing the teeth. This angle, which

should be given on the drawing, may be determined either graph-

ically or by calculation. The first method is illustrated in Fig.

3. Some smooth surface should be selected, having a straight

edge as at A . A line B, equal in length to the lead of the worm

thread, is drawn at right angles to the edge A, and a distance C
laid off equal to the circumference of the pitch circle of the worm.

Machinery

Fig. 3. Method of Obtaining Helix Angle of Worm

If the diameter of the pitch circle is not given on the drawing,

it may be found by subtracting twice the addendum of the teeth

from the outside diameter of the worm. The addendum equals

the linear pitch X 0.3183. The angle a is then accurately meas-

ured with a protractor, as shown in the illustration.

The table of the machine is then swiveled to a corresponding

angle which can be measured by the graduations provided on all

universal milling machines. If the front of the table is repre-

sented by the edge A, and the worm has a right-hand thread,

the table will be swiveled as indicated by the line ab\ if the

worm has a left-hand thread the table will be turned in an oppo-

site direction. The angle that the teeth of the worm-wheel

make with its axis, or the angle to which the table is to be swiveled,

rriay also be found by dividing the lead of the worm thread by
the circumference of the pitch circle; the quotient will equal the
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tangent of the desired angle. This angle is then easily found by
referring to a table of natural tangents.

The Gashing Operation. The cutter is next sunk into the

blank to the proper depth. If the diameter of the cutter is no

larger than the diameter of the hob to be used, the depth of the

gashes should be just a trifle less than the whole depth of the

tooth. This whole depth is found by multiplying the linear

pitch by 0.6866, as explained in Chapter VI. When the diam-

eter of the cutter is greater than that of the hob, we have the

condition shown at F in Fig. 2. The depth to which the gashing
cutter should be set is then limited by the depth of the cut at the

side of the blank. Should the diameter of the cutter be smaller

than that of the hob, the condition shown at G is encountered.

Here the limiting depth to which the cutter should be set is shown

to be on the center line.

Before starting a cut, bring the cutter into contact with the

wheel blank and set the dial on the elevating screw at zero.

Then sink the cutter to the proper depth, as indicated by the

dial. When the cutter is larger than the hob, the depth of the

tooth should be laid out on the beveled side of the cutter blank

and a gash cut to this line. The depth as indicated on the dial

should then be noted and all the gashes cut to a corresponding

depth.

The Hobbing Operation. When the gashing is finished, the

table is set at right angles with the spindle of the machine, and

the cutter is replaced with a hob as shown in Fig. 4. The out-

side diameter of the hob and the diameter at the bottom of the

teeth are slightly greater than the corresponding dimensions of

the worm in order that there may be clearance between the latter

and the worm-wheel. Before bobbing the dog is removed from

the arbor.

Adjust the table longitudinally until the center of the blank

is directly under the center of the arbor H. The blank may be

set quite accurately by bringing it into contact with the arbor

and adjusting the work until the arbor rests centrally in the

throat of the blank. With the arbor still in contact with the

periphery of the blank, at its throat, set the dial of the elevating



236 WORM GEARING

screw at zero. Measure the diameter of the arbor with a microm-

eter, and divide this dimension by 2, obtaining the radius.

Measure the diameter of the hob K, and also ascertain its radius.

Subtract the radius of the arbor from the radius of the hob,

lower the knee of the machine an amount equal to this result,

and again set the dial at zero. The knee may now be lowered a

small amount in order that the blank may clear the hob when the

latter is being placed on the arbor.

/

Machinery

Fig. 4. Hobbing the Worm-wheel

Tighten the hob on its arbor, and then raise the knee until

the hob is in mesh with the gashes in the blank. It will be ob-

served that the whole tooth depth has not been reached when

the hob bottoms in the gashes. The machine is now set in mo-

tion and as the hob revolves the blank rotates with it. The

hob is now fed into the blank, by raising the knee, until the dial

indicates the correct depth. If the hob is properly made, and

the wheel blank accurately sized, the teeth will be cut to the

correct depth when the inner diameter of the hob grazes the

blank at its throat diameter. The hob and blank should now
rotate several times to eliminate any spring and to produce
smooth teeth.
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After the work has made a few revolutions, to insure well-

formed teeth, as mentioned, the hob and wheel are disengaged,

and the finished worm is placed in mesh with the latter, as shown

in Fig. 5, after the chips have been thoroughly removed from the

teeth on which the worm bears. The worm is now turned along

the periphery of the wheel until its axis is parallel with the top

of the table. It may be set in this position by testing the top

surfaces of the threads at either end with a surface gage. Set

the pointer of the gage so that it just touches the top of a thread

Fig. 5. Determining the Center Distance Between Worm and Wheel

and measure the distance x from the pointer to the arbor. Sub-

tract from this dimension the difference between the radii r and

r\ of the arbor and worm, and the result will be the center dis-

tance c. If the worm is accurately made and the worm-wheel

blank turned to the exact dimensions, this center distance should

be very close to the distance required. If necessary, the hob

may be again engaged with the wheel and another light cut taken.

When testing the center distance, as explained in the foregoing,

it is better to lower the knee sufficiently to make room for the

worm beneath the hob, and not disturb the longitudinal setting
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of the table, as the relation between the wheel and hob will then

be maintained, which is desirable in case it is necessary to re-

hob the wheel to reduce the center distance.

Reducing Flats on Hobbed Worm-wheel Teeth. The larger

the diameter of a hobbed gear the pitch remaining the same
- the more closely the tooth outline approaches the shape of a

rack tooth. The flats left on the teeth by the hobbing operation

also become perceptibly less as the size of the wheel increases.

The flats on the teeth of hobbed worm-wheels with a small num-

ber of teeth can be reduced by the use of a hob having a large

number of flutes. Where a fly-cutter hob is used, the flats can

be further reduced by moving the hob along its axis after the

Machineri

Fig. 6. Hob Working on Worm-wheel in First Position

first cut has been taken and moving the worm-wheel on its arbor

a corresponding amount. By making five or six such shifts of

the hob, a very smooth worm-wheel is produced. The fly-cutter

hob and gear blank must be geared together and the blank cut

to depth before shifting the hob on its axis as described. .

In Fig. 6 the tooth D of gear B is in contact with the hob A
at the point F. In this position, a series of flats are produced
on the gear as it revolves in the direction indicated by arrow K.

By moving the hob along its axis a distance equal to a small

fraction of the circular pitch in the direction shown by the arrow

C, the hob A is brought into contact with the tooth D at the point

H as indicated in Fig. 7. A new series of flats is produced in

this way causing the corners to be sheared off the flats which
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were produced when the hob was in the position illustrated in

Fig. 6. By repeating this process, moving the hob along its

axis a number of times, the flats produced in hobbing a worm-

wheel in this way can be practically eliminated. The total dis-

tance through which the hob is moved is from one to two times

the circular pitch. The movement of the hob along its axis

can be accomplished automatically by suitable apparatus prop-

erly timed and operating in connection with the driving mechan-

ism of the gear and hob. Although it takes slightly longer to

hob wheels by this method, the increased accuracy of the work

more than compensates for the additional time which is necessary

Machinery

Fig. 7. Conditions after Hob has been Shifted, showing Change in
Relative Position of Hob and Wheel

for the operation. This method of gear hobbing is used by the

Boston Gear Works when a smooth worm-wheel is required.

Suggested Refinement in the Hobbing of Worm-wheels.

At the left of Fig. 8 is a sectional view showing a hob in the act

of putting the last finishing touches on a worm-wheel. The hob

is supposed to be a new one and is shown in the condition it is in

when first received from the makers. At the right of Fig. 8 is

shown the same hob putting the finishing touches on a worm-

wheel similar to that in the first case. The hob in this case is

represented as having been in use for a considerable time, and

having been ground down to the last extremity, ready to be

discarded for a new one. A study of this cut will show that if

the hob is made in the first place to properly match the worm
which is to drive the wheel, it will not, when worn, cut exactly
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the proper form of tooth in the blank to mesh with that worm.

The teeth are cut to the same depth in each case, this being

necessary in order to make a proper fit with the worm, which is

the same in each case and is set at the same center distance.

The grinding away of the worn hob has reduced its diameter by
an amount indicated by dimension b. Its center is therefore at

P on the line AB, which is offset by a distance represented by
dimension a from the line CD on which the center of the new

hob is located. This reduction in diameter as the hob is ground

away from time to time, so evidently follows from the construc-

tion of the relieved hob, that it scarcely needs to be explained.

Machinery

Fig. 8. The Difference in Shape of Teeth Cut by New and Old Hobs

It is said of relieved hobs that they can be ground without

changing their shape. This is true so far as the outline of the

cutting edge is concerned, but it will be evident, on examining

the conditions shown at the right hand of Fig. 8, that whatever

the outline of the cutting edges, a new hob of radius R will not

cut exactly the same shape teeth in the blank as the worn hob

with radius r. The elements of the tooth surface it generates

are struck from a center P, removed by dimension a from center

O' which is the location of the axis of the worm with which it

meshes.

It is possible, and perhaps practicable, to overcome this slight



METHODS OF CUTTING TEETH 241

error; that is, to so design and use the hob that it will cut as

correct teeth when worn as when new. In Fig. 9 dotted line

AA represents the outlines of a new hob in the act of finishing

the worm-wheel shown. Were a hob, ground as shown at the

right of Fig. 8, to be substituted on the arbor for this new hob,

without altering the adjustment of the machine except to move
the hob endwise and bring it in contact with the teeth of the

wheel on one side, this hob would be represented in Fig. 9 by the

full line BB. It is evident that the left-hand cutting edges of

this hob coincide (to the depth they extend into the wheel)

with those of the new hob represented by outline AA . They will,

therefore, so far as they extend, cut identically similar and correct

tooth curves with the new hob.

Fig. 9. Cutting Action of Ordinary
Hob at Fixed Center Distance
when New and when Worn

Fig. 10. Action of Proposed Hob
when New and when Old
Graphically Shown

Teeth cut with this worn hob would, however, evidently have

two faults. The space would be too narrow at the pitch line

by a distance measured by dimension w, and they would not be

cut deep enough in the blank by a distance measured by dimen-

sion n. The problem is to so alter the design and application of

the hob, that, even when worn, we can cut the teeth deep enough
and the space wide enough.

Fig. 10 shows these conditions fulfilled. Dotted line CC shows

the outline of the proposed hob when new. The only difference

between the proposed hob and the regular one, whose outlines

are shown by the dotted line AA in Fig. 9, is that the teeth have

been lengthened by an amount equal to dimension o. The hob

is fed in as was the case with the new hob in Fig. 9 until the dis-

tance between its center line and that of the blank is the same as
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that between the center line of the worm and the wheel in the

finished machine. The increase in radius, then, by an amount

o, makes the hob cut a clearance deeper than is necessary by that

amount. In a spur gear this would doubtless be a bad thing,

since it would make the tooth slenderer and therefore weaker.

A worm-gear, however, if designed to be sufficiently durable

for continuous use, is almost certain to be several times stronger

than necessary, so that the slight weakening involved in the

change is not of great importance. When the hob is worn to

the shape shown by the full outline DD, the hob is evidently of

the same diameter as the new one in Fig. 9, represented by dotted

outline AA. The tooth space, however, as before explained, will

be too narrow by the amount m in Fig. 9 or p in Fig. 10. To
widen it out sufficiently, it is, therefore, necessary, after the hob

has been fed in to the proper depth, to still continue the cut-

ting action, feeding the hob endwise, however, until it has been

displaced to the position indicated by outlines D'D'. The re-

sulting tooth is evidently identical with that given by the new

hob AA in Fig. 9.

It will be understood that when the hob in Fig. 10 is new, it

will not have to be shifted end-wise at all, since it will cut a tooth

space of the proper width as soon as fed to depth. It will, how-

ever, cut a space deeper than necessary by an amount o. The

worn hob, on the other hand, has to be shifted longitudinally by
an amount p and cuts to exactly the required depth. These

represent the two extreme conditions. When the hob is half

worn, the excess clearance will be equal to half of o, and the

longitudinal displacement necessary will be equal to half of p.

While the change in the design of the hob could be made

easily enough, there is doubtless some difficulty in making the

required change in the nobbing of the blank. Taking it for

granted that the hob has been made to suit the worm which is

to be used, and that it, therefore, has the same pitch diameter

and thickness of tooth at the pitch line, the method of procedure
will invariably require that the hob be fed in to the worm-wheel

blank until the distance from the center of the hob to that of

the wheel is the same as the distance from the center of the worm
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to that of the wheel in the finished machine. This will be true

whether the hob is new or worn, and whatever may be the kind

of machine on which the hobbing is done.

The method by which the hob is displaced longitudinally will

depend on the machine used for the operation. There will be

no possible way of doing it if the wheel is being finished while

running loosely on centers, as is common practice when the

blank has first been gashed. It is required that the hob and blank

be positively geared together. If a positively driven hobbing

attachment in the milling machine is being used, the matter is

simple. If the hob is being driven by the spindle of the machine,

throw in the cross feed in either direction until the required

longitudinal displacement of the wheel with relation to the hob

has taken place. The question as to when this has taken place

may be decided either by measuring the thickness of the tooth,

as in cutting spur gears, or by trying the wheel from time to time

with its worm, the two parts being mounted in place in the ma-

chine they are to go in, or held the proper distance apart by
other means.

For regular hobbing machines, as at present made, the matter

is more difficult. The required longitudinal displacement of

the hob may be obtained, in effect, by a rotary displacement of

the hob which may be accomplished by slipping (a tooth at a

time), the teeth of the change gears connecting the hob and the

blank. If a hobbing machine were to be built especially for use

in the way which is here suggested, differential gearing could be

introduced in the train between the hob and the wheel, to which

a power feed could be given to effect the rotary displacement

when the hob has been fed to depth, or a power feed, might be

applied to feed the spindle and its attached hob endwise to effect

the same result.

It is not certain that the error which exists in the use of re-

lieved hobs is of enough importance to warrant taking any trouble

to remedy it. It is always well, however, to know and under-

stand such errors as may exist in any process of this sort, no

matter if they are of no great practical importance.



CHAPTER XII

HOBS FOR WORM-GEARS

IF a worm and gear of standard proportions are brought into

mesh, we have at the bottom of both the thread of the worm
and teeth of the gear a clearance equal to one-tenth of the thick-

ness of the thread or tooth at the pitch line. The clearance at

the root of the gear tooth is obtained by enlarging the hob over

the diameter of the worm, by an amount equal to two clear-

ances, while the clearance of the tooth in the thread bottom is

Machinery

Fig. i. Dimensions of the Worm

taken care of by the proper sizing of the gear blank.

Dimensions of Hob. While it may be customary practice

to make the hob an exact duplicate of the worm except in the

one item of outside diameter, a hob proportioned as suggested in

Fig. 3 is recommended as one that will give much more satis-

factory results, and be found to be well worth any additional

trouble in construction required beyond that for the style ordi-

narily used. The peculiar feature of this hob is that it is an

exact opposite of the worm with respect to the proportions of

the thread shape; the depth below the pitch line in one case

244
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being equal to the height above the pitch line in the other. The

object of this is to have a hob that will form the complete out-

line of the tooth and make it absolutely certain that the standard

proportions of tooth and clearance are obtained. Thus, should

the diameter of the blank be large, the hob will trim off the top

of the gear teeth to the proper length, when the proper center

distance is maintained.

There is another point that is generally overlooked, and that

is the necessity for having the corners of the thread rounded over,

and for providing a liberal fillet at the root

of the thread. The radii of the rounded

corner and the fillet may be as large as the

clearance will allow, which would be one-

twentieth of the circular pitch of the thread.

The effect that this fillet and rounded

thread has on the shape of the tooth is

due to the fact that it increases the quality

of the gear and the strength of each indi-

vidual tooth. The rounded corner on the

thread points does away with any ten-

dency to scratch the surface of the tooth

in the cutting action, and leaves a much

larger fillet at the root, greatly increasing the

strength. The fillet at the bottom of the thread rounds off the

top of the tooth in the worm-gear, removing any burrs, and

leaving a nicely finished product. This fillet also removes the

dangerous tendency of the hob to develop cracks in the harden-

ing process a common source of trouble even where care is

taken. Fig. i shows the proportions of the worm in comparison
with the hob in Fig. 3.

Thread Tool for Hob. In forming the hob much can be

gained by making a special form tool of correct proportion that

will leave no chance for error; the only dimension needing care,

then, is the diameter. Such a tool is shown in Fig. 2. The

figure is dimensioned by formulas, so that a tool for any pitch

can be easily proportioned from it. This tool may be made by

using a gear caliper without resorting to the protractor, or the

Fig. 2. Dimensions of

Tool for Threading
the Hob
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protractor may be used in laying out the angle. This tool may
be made without side clearance, providing that the sides incline

in the same direction and at the same angle that the thread takes,

but, under ordinary circumstances, where only one hob is to be

made, little is gained by having no side clearance. The clearance

may be made from 5 to 10 degrees from the angle of the thread.

Grinding a tool like this of course changes its form, so it must

not be used indefinitely in making large numbers of similar

hobs.

Number of Flutes in Hobs. The number of flutes that

should be provided in the hob is a point on which very little is

said, various authorities differing widely. Where the hob is to

v

Machinery

Fig. 3. Dimensions of the Worm-wheel
Hob

Fig. 4. Dimensions for Flut-

ing the Hob

be used in an automatic hobbing machine in which the hob and

blank are positively geared together, the number of flutes may
be a comparatively small number as compared with a hob that

is to be used in connection with ordinary processes of hobbing

worm gears. In the process in which the previously gashed

worm-gear blank is swung loosely on centers and revolved by
the hob as the latter rotates, the hob should have a larger num-

ber of flutes.

A rule that checks up well with present practice is as follows:

To find the number of flutes in a hob, multiply the diameter of

the hob by three, and divide by twice the circular pitch.

The above rule gives suitable results on hobs for general pur-

poses.

Some authorities on worm-gearing state that the number of
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flutes in a hob should in no case be an exact multiple of the num-

ber of threads. Their reason for this rule is that the hob so

gashed will produce a much smoother tooth and one nearer correct

in shape, because no tooth in the hob passes the same tooth in the

gear twice in succession, so that any imperfections in the shape
of the individual hob teeth are counteracted by one another.

Another authority is strong in his advice not to have the circum-

ferential distance from flute to flute equal to or equally divisable

by the circular pitch, for the same reason as stated regarding

the former rule. From these statements it is seen that to obtain

a rule that would be at once simple and yet take all conditions

into consideration, would be a difficult proposition. It seems,

however, that only the first of these two rules is a logical one.

Owing to the fact that hobs have teeth only, instead of full sur-

faces matching the worm, the curved outlines of the wheel teeth

are merely approximated by a series of tangents. If the num-

ber of flutes in the hob is a multiple of the number of threads,

the hob teeth will "track" after each other, giving wheel teeth

only roughly approximated by a comparatively small number of

long tangents. This subject is treated in detail in the latter

part of this chapter.

Character of Flutes. The cutter used in gashing the hob

should be about f inch thick at the periphery for hobs of ordinary

pitch, while for those of coarser pitch a cutter J inch thick would

be much better. The width of the gash at the periphery of the

hob should be about two-fifths the pitch of the flutes. The
cutter should be sunk into the blank so that it reaches from ^

3
g-

to I inch below the root of the thread. Fig. 4 shows an end view

of a hob gashed according to these rules.

Where a hob is to be used to any great extent, and is subject

to much wear, it would be advisable to increase the diameter

over the dimensions given from o.oio to 0.030 inch, according

to its diameter and pitch, to allow for decrease in diameter due

to the relief, and caused by grinding back the cutting face in

sharpening.

Hobs are generally fluted parallel with the axis, but it is obvi-

ous that they should be gashed on a spiral at right angles with
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the thread helix in order that the cutting face may be presented

with theoretical correctness; but the trouble encountered in

relieving the teeth on the ordinary backing-off attachment is the

cause of the common mode of fluting. When the pitch or lead

is coarse in comparison with the pitch diameter of the hob, so

that the angle is correspondingly steep, it may be best to flute

on the normal helix, and if the hob cannot be machine relieved,

it may be backed off by hand.

The amount of relief depends much on the use for which the

hob is intended. A hand hob for hobbing a gear in position may

Machinery

Fig. 5. Diagram for the Derivation of Formula for Spirally-fluted
Hobs

be made with little or no relief, while hobs used on hobbing ma-

chines may have much more relief than those used on the milling

machine.

Spiral-fluted Hob Angles. It is, of course, desirable that

hobs should be fluted at right angles to the direction of the

thread. Sometimes, however, it is necessary to modify this

requirement to a slight degree, because the hobs cannot be re-

lieved unless the number of teeth in one revolution, along the

thread helix, is such that the relieving attachment can be prop-

erly geared to suit it. In the following it is proposed to show

how an angle of flute can be selected that will make the flute

come approximately at right angles to the thread, and at the

same time the angle is so selected as to meet the requirements

of the relieving attachment.
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Let C =
pitch circumference;

T = developed length of thread in one turn;

N = number of teeth in one turn along thread helix;

F = number of flutes;

a angle of thread helix.

Then (see Fig. 5) :

C -T- F = length of each small division on pitch circumference.

(C -r- F) X cos a =
length of division on developed thread.

C + cos a = T.

T F
Hence , ^ = N =

(C -5- F) cos a cos2 a

Now, if a =30 degrees, N =
i^F',

a = 45 degrees, N = 2 F;
a = 60 degrees, N = 4 F.

In most cases, however, such simple relations are not obtained.

Suppose for example that F =
7, and a = 35 degrees. Then

N =
10.432, and no gears could be selected that would relieve

this hob. By a very slight change in the spiral angle of the

flute, however, we can change N to 10 or io|; in either case we
can find suitable gears for the relieving attachment.

The rule for finding the modified spiral lead of the flute is:

Multiply the lead of the hob by F, and divide the product by the

difference between the desired value of N and F.

Hence, the lead of flute required to make N = 10 is:

Lead of hob X (7 -* 3).

To make N =
loj, we have:

Lead of flute = lead of hob X (7 -J- 3.5).

From this the angle of the flute can easily be found.

That the rule given is correct will be understood from the fol-

lowing consideration. Change the angle of the flute helix |8

so that AG contains the required number of parts N desired.

Then EG contains N - F parts; but cot/3 = BD -=- ED, and

by the law of similar triangles :

BD =
j-X BG, and ED = ^~ C.

The lead of the spiral of the flute, however, is C X cot 0.
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Hence, the required lead of spiral of the flute:

This simple formula makes it possible always to flute hobs

so that they can be conveniently relieved, and at the same time

have the flutes at approximately right angles to the thread.

Graphical Method. The angle of the flutes, determined so

as to avoid difficulties in relieving, may be found graphically as

B
Machinery N.Y.

Fig. 6. Graphical Method for finding Gashing Angle and Number of

Flutes for which Backing-off Attachment should be Set for

Spirally-fluted Hobs

follows: First, lay off a base line AA
7 Fig. 6, of any convenient

length.
- Then erect the perpendicular AC making it equal to

the developed length of the pitch circumference of the hob.

From C draw line CD parallel to the base line AA and of a length

equal to the lead of the hob. Now draw diagonal AD which

represents the thread. Divide AC into as may equal parts as

there are flutes in the hob, as a, b and c. From C and a draw

lines through and at right angles to the diagonal AD, as CE and

aF. Then length EF equals the pitch of the flutes on the thread

when the gashing is at right angles to the thread. To proceed,

divide AD into a certain number of equal parts, the length of
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these parts to be as near to the length EF as possible. Step off

these divisions on AD, and through the division nearest to E,

as at G, draw a line from C to the base line intersecting the base

line at B. This line CB represents the gash, line AB the lead

of the gash, and the number of divisions in the line AD equals

the number of flutes to one revolution of the hob, for which we

must gear the machine.

To get the exact length of AB, divide the number of divisions

in AG by the number of divisions in GD and multiply the result

by the length of the line CD or the lead of the hob. The angle

a which is the angle for gashing can be found by scaling the

diagram. For example, let the hob be 2 inches pitch diameter,

lead 5 inches, and number of flutes 8.

We first draw base line AA, and the line AC 6.28 inches long

which is the pitch circumference. Now draw CD 5 inches long,

and then draw line AD. We now divide AC into eight equal

parts and draw lines from C and a through and at right angles

to AD, intersecting AD at E and F. Setting the dividers to

length EF we step off line AD and find that this length EF will

go into AD SL little over thirteen times; so we divide this line

AD into thirteen equal parts. It is now necessary to gear the

machine for thirteen flutes to one revolution of the hob.

The division nearest to E is G, so by drawing a line from C

through G we intersect the base line at B. In the line GD there

are five divisions, and in the line AG there are eight divisions.

The lead of the hob is five inches, so that the length of the lead

for the gash or AB is ^ X $
= 8 inches. By measuring on the

diagram by a scale we find the gashing angle is 38^ degrees.

Therefore, we will gear the machine used in backing-off the hob

for 13 flutes to one revolution, and we will gear the milling ma-

chine to cut a lead of 8 inches, at a gashing angle of 38J degrees.

Lengths of Worms and Hobs. The derivation of a formula

for quickly finding the approximate length of a hob, or of a

worm to run with a worm-wheel having hobbed teeth, depends

primarily upon an assumed relation between the worm and worm-

wheel and also upon the pitch and size of the wheel. The rela-

tion between the length of worm and the dimensions of the
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worm-wheel differs with the conditions under which the gears
are to run or the standards of the manufacturer.

In Fig. 7 the hob (or worm) is shown extending from A to B,
which produces a hob having the maximum generating action.

This length also provides a safe allowance for any end adjust-

ment which may be necessary for the worm. A hob to cut a

worm-wheel without interference should be as long as the worm
to be used, and neither should be less than the length of the chord

between points F and G, which are on the wheel pitch circle.

Let AB or length of hob =
/;

BC or throat circle radius =
r\

DE or whole depth of tooth =
d\

Number of teeth in worm-wheel = N.

CE = BC - DE = r - d.

Solving the right-angle triangle enclosed by the lines BC, CE

and BE for r, r d and-
J,
we have:

r
2 - 2 rd + d2 + - = r

2
.

4

- = 2rd; - = 2rd-
4 4

In order to further simplify the formula, we will assume the

pitch to be i-inch circular pitch.

DE or d (whole depth of tooth) would then equal 0.6866 inch,

and BC or r (throat circle radius) would be equal to
2 X

Substituting we get:r /N + 2 ~\
f = 2 V 0.6866

(

-
|
- 0.6866

)

\3-i4i6 /

This can be simplified as follows:

/ = 2 Vo.2i855 N -
0.03432
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Squaring both sides of the equation we get:

/
2 = 0.8742 N 0.13728.

As the value for/ need be only approximate, we can write the

equation as follows:

8 8o'

8 8^
=

;

=o.8o/
2 - joN

Now, if we solve for / for different numbers of teeth, the

length of hob or worm for i-inch circular pitch will be obtained.

Machinery

Fig. 7. Diagram of Worm and Worm-wheel for Determining Length
of Worm and Hob

For other pitches it will be necessary to multiply by the cir-

cular pitch to obtain the correct length.

The accompanying table gives the values of / for i inch cir-

cular pitch. To illustrate the use of this table, suppose we de-

sire to find the length of a worm to suit a f-inch circular pitch

worm-gear, having 39 teeth. Find the value for / in the table

opposite 39 teeth. This value is 5.83 and multiplied by the

pitch, f inch, gives 4.37, or about 4! inches, which is the length

of the worm or hob.
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Table of Constants for Determining the Lengths of Worms or Hobs

Factor/ equals length of worm when circular pitch is i inch. To find
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Number of Flutes in Hobs. The question of how many
gashes to cut in a worm hob, particularly if the hob is multiple

threaded, has always been a puzzling one for most mechanics.

Many believe that the only requirement is that the number of

gashes must have no common factor with the number of threads

in the worm. That is to say, if the worm is quadruple threaded,

the number of gashes should be 9 or 7 rather than 8. If the worm
is sextuple threaded, the number of gashes should be 7 or n
rather than 8, 9 or 10. This is one requirement, but there seem

to be other factors that enter into the decision as well. These

were brought to the attention of Mr. R. E. Flanders, who care-

fully investigated this subject a few years ago, by Mr. N. B.

Chace, superintendent of the Cincinnati Shaper Co., who was

endeavoring to obtain a hob that would cut smooth, regular

teeth for the worm-wheel of the spindle drive in a machine he

was building.

The worm-wheel of this drive had 35 teeth. The worm had

7 threads and a lead of 5 inches. The number of flutes or gashes

in the hob was 9. These gashes were milled spirally so that they
were at right angles to the thread. The hob was made by a

well-known firm which makes a specialty of such work; it was

proved by subsequent tests to be accurately and finely made,
and altogether a very creditable piece of work. Do what he

could, however, Mr. Chace was unable to hob worm-wheels

that would be satisfactory. When tried in place in the machine

and run with the worm, each one appeared to have five low spots,

almost as if the pitch line were a pentagon instead of a circle.

The wheels were taken out and the thickness of the teeth in the

center of the throat at the pitch line measured as accurately as

possible.

The results of one of these tests are shown in Fig. 8, where it

will be seen that there is a regular recurrence of thin teeth in

each fifth of the circumference of the wheel with less marked

series of fine intermediate thin teeth. The diagram in the

center of the figure shows graphically (by the exaggerated radial

distance from the center) the variation in the measurements

obtained. The first thought would naturally be that the hob
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had warped out of true in hardening, in which case the ratio

between the worm and the wheel of 5 to i would give the error

indicated; but careful measurements failed to detect any error

of this kind, either in the periphery of the hob or on the sides of

the cutting edges.

The Imperfect Generating Action of the Hob. To find what

was really the trouble with the hob (or rather, with the work of

Machinery

Fig. 8. Thick and Thin Teeth Produced by Incomplete Generating
Action on the Part of the Hob

the hob, for the hob was found to be all right), it will be neces-

sary to study its action in cutting a worm-wheel. The dia-

gram in Fig. 9 will serve to illustrate some of the important

points connected with this action. In the upper part of the dia-

gram at the right is shown an end view of a single-threaded hob

having six gashes. To the left of this is shown the pitch cylin-

der of the hob with a helix traced upon it, representing the center
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PITCH CYLINDER OF HOB
I f

Machinery

Fig. 9. Finding the Number of Cuts per Linear Pitch



258 WORM GEARING

of the thread. Lines parallel with the axis of the work are

drawn on this pitch cylinder, representing the intersection of the

faces of the teeth with the cylinder. The intersections of the

helix with these lines at #, b, c, d, etc., represent the positions on

the pitch cylinder of the center of each of the teeth of the hob.

Below this representation of the pitch cylinder is shown a

development of its circumference through an axial length equal
to the linear pitch of the worm, represented in this case by the

distance ci. On this development, the tooth helix between c

and i becomes a straight line, as shown, and the center of the

tooth faces c, J, e, /, g, h and i are developed, as before, by the

intersection of this tooth line with equally spaced horizontal

lines representing the six gashes in the circumference. Below

this development of the circumference of the hob is shown a

series of outlines of the cutting edges of the hob, each one of

which has its center directly below the corresponding center

Cidij etc., in the development. These outlines evidently repre-

sent the successive positions of the teeth of the hob as they pass

the plane of the throat of the worm-wheel in hobbing its teeth.

There are seven of these positions, but as one of them belongs

to the next section of the hob, from i to 0, the diagram shows

six positions of the hob teeth in the linear pitch of the hob.

This means, of course, that the hob does not accurately gen-

erate a tooth of the wheel, since it acts on it only in the six suc-

cessive positions shown, instead of continuously throughout the

whole distance of the circular pitch. In order to get smooth

accurate teeth, the number of cuts in the linear pitch must be

made as many as possible; the more there are, the more nearly

perfect would the generating action be; the less there are, the

rougher will be the tooth. Now, as will be shown later, there is

but one cut per linear pitch in the example mentioned in the

paragraphs headed
" Number of Flutes in Hobs." Under these

circumstances the teeth of the worm, instead of being smoothly

generated to a curve, are only slabbed out by a series of flat cuts,

as indicated in Fig. 10.

The reason for the five thin teeth in the circumference is now
evident. At every fifth of a revolution those teeth of the hob
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which formed the outline near the pitch line oi the gear gave it

a shape similar to that shown at the right of the engraving. In

the thick teeth the conditions shown at the left are found, where

the outline of the tooth at the pitch line is formed by cuts so

placed as to make corners at this point instead of flats as at the

right. This means that the teeth measured on the pitch line

are thick at one point and thin at the other, giving high spots,

as found by running the wheel with the worm, and as indicated

also by the measurement shown in Fig. 8. The reason for the

intermediate thin spots between the even fifths is not clear from

Machinery

Fig. 10. Example of Thick and Thin Teeth due to Incomplete
Generating Action

the preceding explanation, but they are doubtless due to the

particular arrangement of the flats on the tooth outline which

happens in this particular wheel.

Diagrams for Finding the Number of Cuts per Linear Pitch.

It is evidently a simple matter to draw diagrams for any case

showing the development of one linear pitch on the pitch surface

of the hob, as in Fig. 9, and find out from that diagram how many
cuts the hob gives in that distance. In Fig. n eight such dia-

grams are shown, for eight different cases. The first case is a

single-threaded hob having five gashes. This diagram, which is

similar to the one in Fig. 9, shows that there are five cuts to the

linear pitch. In the second diagram a hob of the same diameter

and the same linear pitch having also five gashes, but quintuple
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instead of single threaded, gives but one cut to the linear pitch.
This is evidently a very bad condition and one to be avoided, if

possible, and it is evidently brought about from the fact that

the number of gashes is the same as the number of threads.

CASE II CASE in CASE IV CASE V CASE VI CASE VII CASE VIII

5 CUTS I 1CUT
I

6 CUTS I 6 CUTS I 54- CUTS I 1 + CUT I 6 CUTS I 7+ CU'
1 THREAD

I
5 THREADS 1 THREAD |5 THREADS 1 THREAD J5 THREADS 1 THREAD \ 5 THREA

MacMn

Fig. ii. Diagram for Finding the Number of Cuts per Linear Pitch

In the third and fourth cases the number of gashes has been

increased to six, with a single thread in one case and a quintuple
thread in the other. In each case there are six cuts to the linear

pitch. The fifth and sixth cases are the same as the first and

second, except that the lines representing the gashes have been
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drawn at right angles to the lines representing the tooth helices

as would be necessary for hobs which are gashed helically in a

direction normal to the tooth helices. These cases will be seen

to correspond to Nos. i and 2 except that the number of cuts has

been increased in proportion to the cosine of the gashing angle,

so that we have 5 + cuts for Case V, and i + cuts for Case VI.

In Cases VII and VIII are shown the same conditions as in

Cases III and IV, except that the hob is gashed helically. In

this case, also, the number of cuts is increased in inverse propor-
tion to the cosine of the gashing angle, giving 6 + and 7 + cuts,

respectively, for the two cases, the hobs having six gashes each.

In Fig. 12 are shown four more cases, considerably more com-

plicated than those in Fig. n. Here are four hobs, all of the

same linear pitch and pitch diameter, and all octuple threaded,
with threads of the same lead and helix angle, the only differ-

ence in the four being in the number of gashes and the method
of cutting them. In Cases IX and XI there are eleven gashes,

and in Cases X and XII there are twelve. Cases IX and X are

gashed parallel with the axis. This, of course, would be utterly

impracticable in any hob having threading angles as great as

those shown here, so the example is not a practical one, being
used only for the sake of illustrating a principle. Cases XI and

XII which are gashed helically and normally at right angles
to the threads, represent what would be the practical construc-

tion of these hobs. Projecting the intersections of the thread

lines with the gash lines, down to the bottom of each diagram,
we get for Case IX, eleven cuts to a linear pitch; for Case X,
three cuts to a linear pitch; for Case XI, 38+ cuts; and for Case

XII ii + cuts.

The Effect of the Number of Teeth in the Wheel. There is

still another factor entering into this problem the number of

teeth in the wheel. This is the factor which gave so much
trouble in the case mentioned. Take, for instance, Case IV in

Fig. ii. Suppose that the quintuple-threaded, six-gashed hob,

represented by that diagram, were cutting a 25-tooth wheel, it

would not give the six cuts indicated by the diagram. The
reason for this will appear by comparing Case IV with Case III.
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In Case III, where the hob is single threaded, all of the cuts rep-

resented by the points of the intersections of the thread and

gash lines, are along the same thread.

In Case IV, however, each of the five thread lines in the dia-

gram has but one intersection. That means that if the number

STRAIGHT GASHES. PARALLEL WITH AXIS HELICAL GASHES, NORMAL TO TOOTH HELICES

Jfachineru,N>T

Fig. 12. Diagram for Finding the Number of Cuts per Linear Pitch

of teeth in the gear, as in the supposed example, is a multiple of

the number of threads in the worm or hob, each of those threads

will come back into the same tooth spaces in the wheel at each

revolution of the latter, so that for each tooth space there is but
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one cutting position of the hob tooth that represented, for

instance, by point a for one of the tooth spaces, point b for the

next, c for the next, and so on. If, on the other hand, there were

26 teeth in the wheel, the first time it went around, point a would

cut in a certain tooth space; the second time around point b

would come in the same space, and the third time around point

c would follow, so that each tooth space would get the benefit

of each one of the six cuts, the same as in the single-thread worm
for Case III. It is thus seen that, besides the other points

mentioned, the number of teeth in the wheel has an effect on the

number of cuts of the worm per linear pitch. In the practical

case previously mentioned there was a 35-tooth worm-wheel and

a y-threaded worm, giving the worst conditions possible.

A General Formula for Determining the Number of Cuts.

From the preceding description it will be seen that there are

three points to be taken into consideration in determining the

number of cuts per linear pitch (and the consequent generating

efficiency of the worm) from the number of gashes in the hob.

These factors are: First, the relation of the number of threads

of the hob to the number of gashes. Second, the angle of the

gashing. Third, the relation of the number of threads of the hob

to the number of teeth in the wheel to be cut. It might be con-

sidered that there is a fourth factor, that of the absolute number

of teeth in the wheel, since the trouble that comes from a small

number of cuts per linear pitch is exaggerated in the case of a

wheel having very few teeth. This is not a matter of calculation,

however, and would not enter into the calculations anyway, since

for any given case for which a hob is being designed, the number

of teeth in the wheel is determined approximately at least.

Now, instead of drawing diagrams such as shown in Figs. 9,

ii and 12, it would be better if a simple mathematical expression

could be obtained which would give the number of cuts per

linear pitch directly. This can easily be done. The effect of

the number of gashes with relation to the number of threads is

as follows: The number of cuts per inch varies inversely with the

greatest common divisor of the number of threads and the number

of gashes in the hob. The influence of the number of teeth in the
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wheel is a similar one and may be expressed as follows: The

number of cuts per linear pitch varies inversely with the greatest

common divisor of the number of threads in the worm and the num-

ber of teeth in the wheel. The effect of the angle of the gashing

may be expressed as follows : The number of cuts per linear pitch

varies inversely with the square of the cosine of the gashing angle,

measured from a line parallel with the axis of the hob. These

statements are combined in the following formula:

v G

in which

G = number of gashes;

/3
= angle of gashing with axis;

D = G. C. D. of number of threads and number of gashes in

hob;

D' = G. C. D. of number of threads in hob and number of

teeth in wheel;

X = number of cuts per linear pitch.

(G. C. D. =
"greatest common divisor.")

It is easier to see the relationships expressed above, from the

foregoing diagrams and description, than it is to explain them.

These relationships, although quite simple, are rather elusive.

Perhaps, however, the effect of the angle will be understood

from the figuring of the triangle at the base of the diagram for

Case XII. Note that the formula is true only for the usual cases

in which the gashing is either helical and normal to the threading,

or straight and parallel to the axis. In the latter case, cos2 /3
=

i,

since /3
= o deg., and the effect of the angle disappears.

Applying the formula to the practical example already men-

tioned, we have the following values:

G =
g;

)3
= 20 deg. (assumed, as the angle was not given) ;

Z) = i = G. C.D. of 9 (number of gashes) and 7 (number
of threads) ;

j)' = 7
= G. C. D. of 7 (number of threads) and 35 (number
of teeth in wheel).
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Solving for the number of cuts per inch, we have:

X = 9

i X 7 X O.Q397
2

If the number of teeth in the wheel had been 36 instead of

35, the number of cuts would have been:

v 9 9*
i X i X Q.9397

2
*

0.883

~

which, it will be seen, would immeasurably improve conditions,

giving a fine, smooth outline for this number of teeth in the

wheel. In the actual wheel, as cut by the hob, the slab-sided

effect shown in Fig. 10 was very noticeable, there being about

three cuts to each face of the tooth.

Hobbing Methods which give a Complete Generating Action.

It should be noted that while this faulty generating is liable

to occur with hobbing by the usual method of sinking the cutter

in to depth in a blank, the same difficulty does not occur in the

fly-tool process or in a machine using a taper hob fed axially

past the work, as described in a preceding chapter. In the case

of these machines, working with either taper hobs or fly-cutters,

the number of cuts per pitch is, at the least calculation, the num-

ber of revolutions per linear pitch of advance of the cutter

spindle; it thus runs up into the thousands, where the diagrams
shown in Figs. 9, n and 12 give only from i to 38.

This treatment of the hob question takes care of all the factors

which enter into a determination of the number of gashes to use

in a hob, so far as this effects the accuracy of the generating

action. Expressed briefly, the conclusions are:

Avoid having a common factor between the number of threads

and the number of gashes in the hob.

Avoid having a common factor between the number of threads

in the hob, and the number of teeth in the wheel.
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